戦略思考入門

理想を現実に変える戦略の秘訣

戦略のカギは何? 戦略とは、「戦を略すこと」であるという言葉に、改めて大いに納得した。これを実現するためには、まず明確なゴールを設定し、現状と目標のギャップを正確に認識した上で実行プラン(道のり)を描くことが必要である。そして、ゴールに向かう際には、やるべきこととやらないことをしっかりと見極め、最短最速で無駄なくたどり着くという考え方が重要だと理解した。特に、不要なことを省く部分こそが、リソースを有効に活用し、組織を円滑に動かすために不可欠だと感じた。 何を取捨選択する? また、ゴール達成のためには、やるべきことを丹念に洗い出す一方で、やらないことをリストアップし、取捨選択する戦略が大切であると認識した。この検証を忘れず、今後の活動にしっかりと活かしていきたい。さらに、有限なリソースを最大限に活用するためには、人間が行うべきことや行わないべきことに加え、AIに任せる業務を振り分けることで、より効率的に業務を推進できると考えた。特に、マーケティング業務においては、競合情報の収集や数値分析に多くの時間を割かれているため、適切にAIを活用することで、戦略をより効果的に遂行する可能性があると思う。 夢はどう実現? さらに、私は離職後、老後のライフワークとして取り組みたい保護犬活動のプランを練っており、これまでに培ったスキルと今後の夢の実現に向けた思考整理に本考察を大いに活用していくつもりだ。具体的には、企業で廃棄されそうなペットフードを迅速かつ適切に動物保護団体に回す取り組みを、従来の事例とは異なる独自の仕組みとして創出し、実現可能なプランに落とし込みたいと考えている。

戦略思考入門

競合調査と持続戦略で成功する道筋

VRIOフレームワークの意義とは? VRIOフレームワークにおけるValueとRarityは、ターゲット顧客にとって意味があるか、競合との差別化につながるかに関わる。Imitabilityは施策による差別化が持続するかを考える上で有効であり、Organizationは持続可能な差別化を組織全体で実行できるかどうかの視点である。 顧客ターゲティングの手順は? Step 1. 顧客セグメンテーションに基づくターゲット顧客の特定。 Step 2. ターゲット顧客に対して競合を意識した施策がなされているかの確認。 Step 3. 実現可能性や持続可能性を意識した施策であるかどうかの評価。 業界での差別化戦略の現状は? 自身の業界では、ポーターの3つの基本戦略に基づき、自社は製品軸での集中戦略を採用していると認識した。ただし、ターゲット顧客はかなり広範であり、差別化集中の戦略を採用している。Step 1のセグメンテーションは実施済だが、Step 2の競合調査が不十分である。今後、追加調査を行い、競合との差別化とその持続性を維持するプランを策定したい。 医療分野での新商品企画にどう取り組む? 転職先での新たな業務として、医療分野や計測機器分野での新商品の企画を担当する。顧客セグメンテーションや市場規模に基づく優先順位は設定したが、Step 2の競合動向調査や技術トレンドの把握が不十分である。これが喫緊の課題であり、8月に調査を実施する予定。その後、施策案のブレストをチーム内で行い、Step 3の実現可能性や持続可能性を意識した施策の優先順位付けを9月に実施する予定である。

データ・アナリティクス入門

小さな仮説、大きな成長

なぜ仮説が必要? 仮説は非常に重要です。急いだり怠ったりして、仮説を立てずにいきなり方法論に入ると、結果として時間が余計にかかるか、誤った方向へ進んでしまう可能性があります。 どう検証すべき? また、仮説はあくまで仮の答えであり、その検証が必要です。検証のためには目的意識を持ったデータ分析が不可欠です。そのため、たとえ「答え」となりうるものであっても、複数の仮説を立てることが求められます。さらに、3Cや4Pなど異なる切り口を用いることで、問題全体を網羅的に捉えることが可能となります。 疑いは成長の鍵? 加えて、仮説の立証を目的としたデータ収集や分析においては、自身の仮説が誤っているのではないかという視点を忘れずに実践することが重要です。こうすることで、自分に都合の良いデータだけを集めてしまうことを避けられます。 原因はどう見極め? 実店舗の売上やPLに関する業務では、好調な店舗と不調な店舗が存在します。いずれの場合も、その原因を正確に特定し、好調なら通例に従い、不調なら改善策を講じることが必要です。これまで、まず膨大な時間をかけてデータを収集していたところを、仮説思考を取り入れることで、何が問題なのかを先に明確にし、仮説を立てることから対応するようになりました。 何を意識すべき? また、目につきやすい場所に仮説思考に関するポイントやステップを掲示し、常に意識できる環境を整えることも有効です。正解や不正解を問わず、失敗を恐れずに実践していくこと、日常的に課題意識や疑問を持つこと、そして先輩たちの実践事例や経験から学ぶことが、さらなる成長につながります。

データ・アナリティクス入門

仮説力で拓く新たな学びの旅

仮説とは何か? 仮説とは、論点に対する一時的な答えを意味します。仮説を立てる際には、決め打ちせず複数の可能性を検討することが重要です。フレームワークを活用して、どの指標を基準に、何と比較するか、またそのためにどのようなデータを集計し、どのように見せるかを考える必要があります。 データはどう取る? また、着目する指標や比較対象のデータを収集する際には、「誰に、どのように聴くのか」という点が大切です。都合の良いデータだけに頼ると、誤った仮説を前提にしてしまうリスクがあります。他の可能性を十分に考慮することで、不要な仮説を排除し、より正確な情報に基づいた議論につなげることができます。 議論はどう進む? 日常の業務においても、仮説をもとに論点を提示し、議論を重ねる場面が多いです。これまで経験や肌感覚から決め打ちしていた仮説も、複数の視点で検討することで、より網羅的かつ具体的な検証が可能になります。仮説を裏付けるデータの示し方や、どのように比較し、提示するかという方法も試行錯誤の対象です。 人事事例はどう見る? 人事領域の取り組みとしては、スタッフが出会い採用内定、入社からその後の活躍、さらには休職や退職に至るまでのジャーニーマップを構築した事例が挙げられます。まずこれまでの経験や収集できるデータをもとにストーリーとしてのジャーニーを描き出し、その後、ヒアリングや不足しているデータの補完によって仮説を検証・肉付けしていくという方法です。このとき、現状の仮説が網羅的かどうか、また他の切り口がないかを再確認し、データの取り方や示し方を見直すことが大切です。

リーダーシップ・キャリアビジョン入門

受講生が描く学びの軌跡

モチベーションってどうして? 今回学んだ内容は大きく2点あります。まず、モチベーションについてです。モチベーションは個々に異なるものですが、マズローの5段階欲求や動機付け・衛生理論などを通して、自身の現状を把握する方法を学びました。特に、なぜ働くのかという動機付けの本質を理解することが、効果的なインセンティブの活用に繋がると感じました。また、モチベーションが低い場合には、その理由を明確にし、どのように向上させられるかを検証する必要があると実感しました。一方で、モチベーションが高い場合においては、現状で十分なのか、あるいはさらに高い目標があるのかを確認していくことが大切だと思いました。 振り返りはどう機能する? 次にフィードバックについてです。振り返りの大切さを再確認するとともに、振り返りの環境整備や質問力の向上が不可欠であることを学びました。数字だけの確認に留まらず、本人がどのように考え、どこで迷い、何がうまくいったのかといった具体的な点を掘り下げる質問が重要だと気づきました。これにより、課題の発見や他部門への展開が可能になると考えています。 1on1ミーティングでどうする? また、14日に予定されている1on1ミーティングに向けて、今回学んだ内容を復習し、先月の振り返りのための具体的な質問事項を事前に作成する予定です。数字的な成果について、できたこととできなかったこと、そしてその理由を整理し、モチベーションのフレームワークを実際に活用してみたいと思います。さらに、効果的なコミュニケーションを実現するために、聞き出す環境や信頼関係の構築も意識して取り組んでいきます。

クリティカルシンキング入門

思考を広げる!数字分解の新発見

数字をどう見捉える? 具体的なケーススタディを通じて、数字の分解やイシューの設定、メッセージの伝え方について学びました。数字を分解する際、特定の実例に引っ張られると、考えの幅が狭まることに気付きました。特に「観光」のイメージに縛られると、抽象度を上げる思考が難しくなりがちです。紙に書き出して共通点を探るなど、可視化する方法で考えるのが有効だと感じました。 見直しは本当に必要? また、イシューの設定では、他の数字を何度も確認しないと安心できない点が学びとして大きかったです。ひとつのイシューを見つけたとしても、「本当にそれで大丈夫か」「見落としていることはないか」を考え、数字の分解を見直すことを習慣にしたいと思いました。 チーム戦略はどうする? 現在リーダー役を務めているので、チームのメンバーや組織課題に向き合う際にこの知識を活用したいです。特に次年度のチーム戦略や目標を立てる際には、現状の組織課題をしっかりと把握し、イシューとして捉えた上で解決策を考えていくことが重要です。 抽象化の秘訣は? 抽象度を上げる思考は、身近な課題にも当てはまります。組織課題に取り組む際、他者から聞くチームのイメージや現在の業務に影響されて、思考の抽象度が上がりにくいことがあります。紙に書き出して抽象化する努力をしてみようと思います。また、イシュー設定に関しては、実務では分かりやすいイシューを見つけた時点で他の可能性を除外し、解決策を考えることが多いです。思考のプロセスを意識し、イシューを見つけた後にはそのイシューを再検討し、他の分解方法も試してみることを習慣化したいと考えています。

クリティカルシンキング入門

切り口が変える数字の物語

数字の意味は何か? 数字が持つ意味をより深く理解するためには、まず情報を分解して、その解像度を上げることが重要です。一つの視点だけでなく、複数の切り口から現象を分析することで、より正確な現状把握に繋がります。 結論前の検証は? 具体的には、一つの傾向に満足するのではなく、さらに他の可能性を探る意識を持つことや、得られた分析結果からすぐに結論を出すのではなく「本当にそうなのか」を丁寧に検証する姿勢が求められます。また、頭で考えるだけでなく実際に手を動かし、様々な視点からデータを見直すプロセスも大切です。 MECE活用で分析は? さらに、分析を行う際にはMECEの考え方を取り入れることが有効です。具体的には、階層、変数、プロセスという視点から、物事を漏れなく、重複なく整理していく手法が挙げられます。たとえば、プログラムの参加者数の伸びを検討する場合、年齢だけでなく居住エリアや参加プログラムの種別といった観点から属性を分析することで、より多角的な理解が可能になります。 課題整理はどう進む? また、自身の業務上の課題を明確化するためにも、評価の視点が抜けや重複なく組み込まれるよう、MECEを活用して細分化し、その対応力を数値化する手法は効果的です。担当している事業プログラムの認知度についても、過去数年間のデータを大学別、学部別、学年別、応募種別などの切り口で集計し、グラフ化することで、現状と改善点を明確にできます。もし、最初の分析で十分な結論が得られなかった場合には、別の切り口から再度分析を行い、想定される課題について漏れや重複がないよう整理することが大切です。

マーケティング入門

新サービス普及の鍵は適合性と試用可能性

イノベーションの普及要件とは? 比較優位、適合性、わかりやすさ、試用可能性、可視性がイノベーションの普及要件であるという話は、非常に印象的でした。特に、試用可能性と適合性については、新しいサービスや商品に顧客を移行させたい今の時代において、必要不可欠な観点だと感じました。例えば、スマートフォンの普及は、元々ガラケーで電話を持ち歩く文化や、PCのWEB活用の素地があったからこそ、スムーズに進んだと考えます。 セグメンテーションの重要性 また、現代は価値観が多様化しているため、セグメンテーションを細かくし、自社にとってどこがメリットなのか冷静に判断することが重要だと理解しました。具体的には、ハーゲンダッツが「大人のアイス」というターゲットを設定し、「ご褒美に買うアイス=プレミアムアイス」という新たなジャンルを開拓した例が挙げられます。 誰に何を伝えるべきか? お金を借りることに抵抗がある人が大半であるため、セグメントをしっかり行い、どの層に何を伝えるか(例えば、低金利で無担保融資が可能であること)を明確にすることが重要です。さらに、実際にどのようなシーンでお金を借りることができるのか(教育、旅行、結婚など)を具体的に伝えることが求められます。 自社サービスの再検討方法 このように、イノベーションの普及要件に基づいて商品を見直すことや、競合を意識することの重要性を改めて認識しました。これを機に、自社のサービスの長所や、プロモーションで顧客に与えたいイメージ、行動変数を含めたマーケット選定、プロモーションの方法を再検討していきたいと考えています。

アカウンティング入門

カフェ経営で学ぶ価値と利益の秘密

カフェで価値守れてる? アカウンティング研修の第1週目では、P/L(損益計算書)を題材に、カフェ経営のケーススタディを通して「利益を生み出すためには、店としてどのような価値を提供するか」が重要であると学びました。特に、高級志向のカフェが原価低減を図るために安価な豆を使用しようとしたが、結果的に店のコンセプトが損なわれ、顧客に支持されなくなる可能性があるという事例が印象に残りました。単に売上から原価を引いた数値だけで判断するのではなく、「価値を守ることが利益に直結する」という視点の重要性を実感しました。 IT提案で本当に伝わる? この学びは、私が関わるITシステムの提案やプロジェクト企画にも活かせると感じています。たとえば、顧客に単にコスト削減を訴えるのではなく、その企業のビジョンや利用者のニーズに合致した価値を明示し、費用対効果の高い提案を行うことが大切です。そのため、今後は提案書の作成時に「この機能は誰のためで、どのような価値を提供するのか」を意識し、価格や納期だけでなく、価値提供を軸にした提案を心がけていきます。 価値、どう数量化する? 一方で、「価値を守ることが利益につながる」とはいえ、その“価値”をいかに定量的に測定するかについて疑問も感じました。ITプロジェクトでは、顧客の要求に応えるために機能の取捨選択が求められ、何を守るべき価値とするかの判断が難しいと感じています。他の受講生にも「価値」と「利益」のバランスについて、実際の経験をもとに意見を交換し、定量評価が難しい価値をどのようにマネジメントに反映するかを議論してみたいと考えています。

クリティカルシンキング入門

問いに挑む毎日の成長

今の問いは何だろう? イシューとは、今ここで答えを出すべき問いのことです。イシュー設定の際には、「問いの形にする」「具体的に考える」「一貫して抑え続ける」という3つのポイントを意識する必要があります。まずは、問いが何であるかをはっきりさせることが大切です。 全体で課題を共有する? 次に、その問いを常に意識し続けることで、解決すべき課題が見失われないようにします。そして、組織全体でこの問いを共有することで、皆が同じ方向性に向かって課題解決に取り組むことが可能となります。適切なイシュー設定は課題解決の成功に直結するといえるでしょう。 手法で問題を割り出す? また、これまで学んできたロジックツリーやプロセス分解の手法を活用することで、イシューを導き出す方法もあります。例えば、売上構成をロジックツリーで細かく分析し、問題を特定の要素(例えば、客数の少なさ)に収束させるといったやり方が考えられます。 ユーザー心理は理解済? さらに、自社サービスのウェブサイトに訪れたユーザーがどのような課題を感じ、最終的にどのような体験をしているのかについて、ユーザビリティテストを行わずとも自らイシューを見極めることが可能です。ユーザー行動に注目し、どの画面で何がわかりにくいのか、どのような心理を引き起こしているのかを把握することが重要です。 仮説検証の流れは? 具体的な取り組みの手順としては、まずチームで最も解決すべき問題(イシュー)を特定し、そのイシューに基づいてデータを精査します。その後、仮説検証を繰り返すことで、実際の課題や障壁を明確にしていく流れが効果的です。

クリティカルシンキング入門

考えを広げるクリティカルシンキングの力

自分の考えは正しい? 人は「考えたいこと」に囚われがちであり、その考えは容易に偏ったり誘導されたりします。そのため、客観的な視点、すなわち「もう1人の自分」を意識し、本当にその考えで良いのかを疑うことが重要です。 どう鍛えるべき? クリティカルシンキングを身につけるためには、日常的に繰り返し練習することが必要です。「本当にそれでいいのか」「他に視点はないか」といった疑問を常に思考に組み込む習慣をつけることで向上します。具体的には、クライアントへのメールや1on1の場面、家族との何気ない会話の中でもトレーニングを行うことが可能です。 他人の意見を聞く? 自分の論理を優先しがちですが、他人の意見から学ぶことが多い場合もあります。業務においては、例えば自社の損益にばかり気を取られ、クライアントの立場や利益を考慮しないことがあります。偏見に囚われず、フラットな姿勢で他者の話を聞く意識が必要です。 他の提案はどう? クライアントへのサービス提案時には、「これ以外の方法はないか」や「逆に〇〇のサービスはどうだろう」といった問いを自分に投げかけ、さまざまな視点から提案内容を考えることが鍵となります。提案する際にはシンプルさを心がけ、「なぜならば」という論理的な展開で一貫性を持たせます。そして、フィードバックを受ける際には偏りなく意見を聞く姿勢が求められます。 多角的な視点で? チームの目標設定においても、課題を分析し、「他の視点は?」と多角的な視点を考える必要があります。また、他のチームからの評価を通じて客観的にチームの強みや弱みを見極めることも重要です。

データ・アナリティクス入門

数字で見える学びの未来

どうして視覚化すべき? 数字に集約することと、目で見て理解することの大切さを再確認しました。纏めたデータをグラフ化するなど視覚化することで、ヒストグラムなどを活用しながらデータのばらつきを直感的に把握できる点が印象的でした。 比較で何が見える? また、データ分析は「比較」に基づく作業であり、仮説思考が重要だと感じました。分析のプロセスでは、仮説を立て、異なる視点とアプローチを用いることによって、より本質に迫ることができると理解しています。 代表値はどう使う? 代表値の使い分けと散らばり(標準偏差)を組み合わせる方法も興味深かったです。平均値や中央値、加重平均、幾何平均など、用途に応じた手法があるため、Excelで計算できることから複雑な計算式を覚える必要はなく、実務で活用しやすい点が良いと感じました。 成約率との関係は? さらに、営業活動のように暴露機会と成約率、またユーザーの購買意欲と成約数との因果関係を数値化する場合、代表値だけでなく標準偏差による散らばりを検討することで、ユーザーの傾向をより正確に導き出すことができると考えています。まずは仮説思考から取り組む姿勢が大切だと再認識しました。 グラフの魅力は? 最後に、提供される表形式のデータを様々なグラフで可視化し、検証のヒントを得る点も魅力的です。従来の平均値や中央値に加えて、標準偏差などの散らばりを取り入れることで、ユーザーの購買情報をより明確に把握できる可能性が広がっています。定性情報をいかに数値化してデータ分析に活用するか、その工夫が今後の課題であり、挑戦してみたいと感じました。

「可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right