マーケティング入門

ターゲット再分析で広がる提案の可能性

ターゲティングの再認識をするには? ターゲティングの重要性について再認識しました。現在の業務では、ターゲットが漠然と決まっていることが多く、そのため提案を作成する際にもそのまま進めていましたが、ターゲットを明確にし、他の切り口からも考えていくことで、提案の幅を広げることができると感じました。 フレームワークはどう活用する? また、ポジショニングマップの活用についても理解が深まりました。提案書作成時にフレームワークの重要性を再確認し、特にポジショニングマップを使うことで伝えたい内容をわかりやすく、より効果的に伝える提案ができると学びました。現在作成中の提案書にこの方法を取り入れて実践しています。 新規業務での提案の工夫は? 新規業務の提案書作成においても、早速ポジショニングマップを作成し、提案の重要なポイントを絞り込んでいます。以前は提案内容が多岐にわたってしまうことが多かったのですが、ターゲットの再分析とポジショニングマップを用いることで、セールスポイントを明確に絞ることができるようになりました。 新市場開拓で見えてきたこと 新しい市場開拓に向けた自社サービスの提案を進めている中で、当初想定していたターゲットとは異なる切り口でも再分析することで、新たに提案できる内容が見えてくるのではないかと考えました。早速チームで共有し、意見を求めることにしました。 チームと成果を共有する方法 現在の提案書作成活動では、ポジショニングマップを取り入れ、チームメンバーにも共有することで、セールスポイントの洗い出しや、重要なポイントの確認に役立てています。ターゲティングについてもメンバーと意見交換し、次回のミーティングまでの課題としています。

クリティカルシンキング入門

データ分析で得た新しい視点を育む旅

多角的な分析って? 数字やデータの分析においては、多様な視点での切り口が重要です。どのように分けるべきか迷うこともあるかもしれませんが、迷うよりもまずは様々な方法で分けて可視化してみることが大切です。特徴が見えない場合もありますが、それはその分け方が適していないと学ぶ機会です。特に、MECE(漏れなくダブりなく)を意識して切り分けることで、より正確な分析が可能になります。まず全体像を把握し、MECEを意識した分解を行うことが効果的です。 次回の展開はどう? 現在はコンテンツ開発の時期ではないため、データ分析の機会は少ないですが、次回のコンテンツ開発時には過去のアンケート結果を様々な角度からMECEを意識して可視化することで、新しいコンテンツ開発に役立てたいと思います。また、別の企画での社内研修を考えており、参加者のアンケート結果を活用して次年度の研修内容をどのように改善するかを考える際にこの方法を活用したいと考えています。さらに、アンケート作成時に何を質問すべきか考える際にも役立つと感じています。 可視化の工夫は? 具体的には、以下の方法を試みようと思います。まず、様々なデータを見つけられる限りの切り口で分けて可視化すること。そして、データをエクセルに取り込み、パーセンテージ表示やグラフ化を行い可視化して確認する習慣を身につけることです。さらに、常にMECEを意識し、モレやダブリがないか確認しながら進めることが必要です。 振り返りの学びは? 過去に分析したアンケートデータをもう一度見直し、得た知識をもとに新たな視点で見てみることも重要です。こうした取り組みを通じて、データの見え方の違いを体感し、今後の分析に活かしていくつもりです。

クリティカルシンキング入門

数字の分析で問題解決!MECEで明快に理解

数字分解で見える問題解決策 目で見た情報をそのまま鵜呑みにするのではなく、内訳の計算やグラフ化などの加工をすることで、その数値を見て問題解決のための分析を行うことが重要です。数字を分解することで、問題の要因や発生箇所を特定できます。この際、「MECE」を意識して分解を行うことで、効果的な分析が可能となります。どこからどこまでが「全体」なのかをしっかり定義し、目的に応じた分け方をすることがこの分析の鍵です。 複数の視点で数字を分析する 数字を分析する際には、一つの切り口だけでなく複数の切り口から見て比べることが大切です。そうすることで、一見正しそうな仮説の間違いに気づいたり、本質的な情報の傾向を掴むことができます。数字を分ける際は、機械的に分けるのではなく、「問題は個々にあるのではないか」と仮説を立て、それを確かめるような切り方を試みることが有効です。 採用戦略の数値で見える傾向 採用戦略を立案する際には、クライアント企業の採用プロセス(求職者への求人リーチ~応募喚起、書類選考通過率、面接合格率、内定後の意思決定率など)ごとに数値を分析します。これにより、どこでスタックしているのかを明確にし、それに応じた打ち手を考案し、実行できます。そして、それが自分で解決できる問題なのか、クライアントに動いてもらうべき問題なのかを切り分け、自身の行動を決定していきます。 戦略改良のための比較分析とは? クライアント企業の求人閲覧者を全体として捉え、どれくらいが応募し、そのうちどれくらいの人数が書類選考を通過したかを明確にしてクライアントに提示します。他社や市況感全体と比較することで、どのような傾向にあるのかを伝え、戦略を練っていくことが重要です。

データ・アナリティクス入門

現状整理で未来を切り拓く

状況整理はどうする? 問題解決の基本アプローチとして、まず「What」の段階で直面している状況を整理することが大切です。現状と「あるべき姿」とのギャップを把握し、単に「出願数が少ない」といった表面的な指摘に留まらず、より深い原因を明確にする必要があります。その際、状況の詳細な把握により「Where」を特定し、分析対象を絞り込むことで、無駄な検討範囲を排除していきます。 原因究明はどうする? また、次のステップとして、WhyやHowといった視点から問題の原因やその解決策にアプローチします。事業成長に直結する知財戦略の立案では、現状認識が不十分な段階で安易な解決策に至ってしまわないよう、各ステップを徹底的に深堀りすることが求められます。そうすることで、問題の核心に迫り、より的確な対策を打ち出すことが可能になります。 ロジックはどう活かす? さらに、ロジックツリーの活用により、問題を階層的かつ体系的に分解する手法も重要です。複数の視点から課題を整理し、解決策を絞り込む際には、「もれなく、ダブり無く(MECE)」を意識しながらも、実践では過度にならないよう適度に活用することがポイントとなります。多様な切り口を持つことで、問題の傾向や根本原因が見えにくくなるリスクを回避し、よりバランスの取れた分析が可能となります。 出願戦略はどう進む? 例えば、出願のためのアイディア発掘や出願計画においても、上記の手法を取り入れることで、各ステップの整理が不足している現状を改善する狙いがあります。現状のプロジェクトでは、主に主観が判断に影響しているため、まずは問題の状況整理に取り組み、ロジックツリーを活用した細分化を進めることが効果的だと感じています。

マーケティング入門

訪日観光アプリ成功の鍵を探る

観光案内アプリのセグメンテーションとは? 観光案内アプリの事業化を検討する過程で、特に注意が必要だと感じたのは「セグメンテーションの切り口」です。訪日外国人旅行客を優先すべき顧客層として仮定しましたが、最終的には国内旅行者にも対象を広げたいと考えています。このとき、以下の変数を明らかにし、「購買行動に差が出る切り口を選ぶ」ことが重要だと学びました。 - 人口動態変数(例:年齢や性別) - 地理的変数 - 心理的変数(例:趣味、志向) - 行動変数(例:使用頻度) 6R基準でのターゲティングの重要性 ターゲティングについては、6Rという評価基準を新たに知りました。特に、Rankでは市場規模に加え、イノベーターやアーリーアダプターといった火が付きやすい層を選ぶ必要があると再認識しました。 - Realistic Scale - Rate of Growth - Rival - Rank(優先順位、影響力の強さを考慮) - Reach - Response これらの基準は、市場の魅力と自分たちが勝ち残れるかどうかを比較しつつ選びます。 データを基にしたセグメンテーションプロセス セグメンテーションはデータに基づいて行います。まず、「購買行動に差が出る切り口」を仮説立てし、それに応じてデータを取得します。その後、ターゲティングやポジショニングを以下の手順で進める計画です。 1. セグメント別の市場規模、成長率を推定する 2. 推定結果に優先順位をつける 3. 最も優先する市場について競合との差別化を仮決めする(ポジショニング) 4. 実際に検証する この一連のプロセスによって、より的確で効果的なアプローチが可能になると考えています。

デザイン思考入門

受講生のプロト挑戦と成長記

ユーザーの反応はどう? ユーザーからのフィードバックをもとに改良を重ねることが、成果向上の鍵だと実感しました。そこで、ユーザーの反応をスピーディーに得る手法を検討する必要性を感じています。具体的には、デザイン画や模型など、素早く形にできるプロトタイプの作り方が効果的です。フィードバックは、見た目、機能、使用感という3つの観点で捉えることができ、何を試したいのか、何を確かめたいのかを明確にして適切な手法を選ぶことが重要と感じました。 生成AIの可能性は? また、多くの受講生が生成AIを活用していることにも驚きました。ビジュアル化の面で、今後は私自身もこの技術を積極的に活用していきたいと思っています。 プロトタイプの意義は? 私自身の業務に当てはめると、扱う教材をどのように現場で使っていただくかを検討する役割があります。例えば、現場の指導提案を行う際、いきなり詳細な資料を持ち込むのではなく、まずはプロトタイプとして提案内容を形にし、意見を求めたり実際に使用してもらったりすることで、改善の余地を探ろうとしています。 プロトタイプの罠は? ただし、プロトタイプにこだわりすぎるとスピード感を失い、作成したものに固執してしまうリスクもあります。私自身は、商品開発の立場ではないからこそ、営業、マーケティング、開発といった異なる部門と連携し、情報を共有することが、よりよい企画へとつながると考えています。 十分な準備はどう? 今回の課題に取り組む中で、これまでの積み重ねがプロトタイプの精度を大きく左右することを痛感しました。自分なりに検討はしたものの、他の受講生に比べると十分な準備ができておらず、反省すべき結果となりました。

データ・アナリティクス入門

本質を見抜くヒントがここに

フレームワークはどう活かす? ロジックツリーやMECEのフレームワークについて改めて学ぶ機会がありました。すべてを漏れなく、重複なく進めようとすると議論が停滞する可能性があるため、まずは注目すべき要所を決めた上でアイデア出しを行い、その後に漏れや重複を検証する方法が効果的だと感じました。実務上も、末端の階層にまで拘りすぎないことが重要だと思います。 戦略の組み立て方は? 戦略は「重要課題の特定とその課題を解決するための具体的な行動計画」と定義しています。そのため【What】で問題を明確化し、【Where】で問題箇所を特定し、【Why】で原因を分析し、【How】で解決策を立案するという順序が非常に大切だと感じました。正しい課題設定ができれば、その課題の半分以上は解決に近づいているという言葉にも共感するところです。 問題の構造は見えてる? 表面的な問題に目を向けがちですが、問題を構造的に捉えることが最も重要です。たとえば、全体の受注率だけでなく、個々の受注率や各セグメントごとの受注率、さらには失注要因などを多角的に分析しなければ、真因にたどり着くことは難しいでしょう。問題の構造を要素ごとに分解し、どの要素がトリガーとなっているかを可視化することが鍵だと改めて感じました。 具体化はどう進める? 面倒に思えるかもしれませんが、問題を構成する要素を頭の中だけでなく、文字や図で具体的に表してみることが大切です。手書きでメモを取ったり、マインドマップを作成するなどして、漏れや重複に気づけるよう工夫してみると良いでしょう。ただし、これらのフレームワークはあくまで道具であり、型にはめすぎたり神格化しないよう、柔軟に活用することが求められます。

データ・アナリティクス入門

未来を切り拓く!仮説思考の力

仮説はどう整理する? 複数の仮説を立てる際には、その網羅性と分類が重要です。過去の失敗を分析する場合や、将来の事業の成功を予測する場合には、3Cや4P分析を活用して仮説を立ててみると良いでしょう。 データ収集はどうする? 仮説を裏付けるためのデータは常に存在するわけではありません。必要な情報を収集する場合、誰に何をどのように聞くべきかを慎重に考える必要があります。都合の良い情報だけを集め、他の可能性を排除しないようにする意識も大切です。この姿勢は「関心や問題意識のないところに仮説は生まれない」というマインドセットにも通じています。 市場特性の見極めは? 3Cや4Pの視点で現在のビジネス状況を正しく理解することが不可欠です。しかし、市場や業界、製品が特殊な場合には注意が必要です。例えば、医療業界ではエンドユーザーが患者であり、購入決定権を持つのは医療者であるケースがあります。広告制限のある製品については、適切な顧客設定と検証が必要です。自社だけでなく、関わるグループ施設市場を含めた3C、4P分析も有効です。 3W1Hで速さは向上? 仮説の3W1Hを繰り返すことでビジネススピードが向上します。過去と未来の仮説を分けて分析し、サイクルを回すことが必要です。たとえば、大型コンペの参加が有効だったか、その前後の効果や成功の分析、次回の見込みや採用率の変化が周囲に与える影響の予測を行います。 Excel作業改善のコツは? データの比較基準が異なる場合、データの取得、加工、単位や見え方の統一が課題になります。実際の分析開始前の準備段階でのExcel作業に多くの時間を費やすことが課題となっているため、この点のスキルアップが必要です。

戦略思考入門

スキルを活かした業務改善の冒険

規模と範囲の違いは? 規模の経済性と範囲の経済性について学びました。規模の経済性は、現在の業務においても馴染み深いものであり、生産を拡大してコストを削減し、生産効率を向上させる手法です。一方で、範囲の経済性は複数の製品やサービスを同時に生産することでコストを低減する方法です。そのコストダウンのアプローチにはデメリットもあるため、目的に応じた選択が重要です。 演習で何を実感? また、最後の演習では、与えられた数値や資料を基に仮説を立て、その仮説の正しさを検証することから始めました。この過程で、粒を出すことまではできても、それを整理するためのフレームワークの活用がまだまだ不十分であると感じたため、分析能力の向上が必要だと痛感しました。 中長期戦略はどう? 今後の中長期的な視点としては、新規事業への挑戦時に学んだ内容を活用します。新たにBPO・BPR事業に参入する際には、3C分析、SWOT分析、PEST分析を活用し、目的に合わせた組織形成や業務設計を提案することを目指します。 課内改革は何から? 短期的には、課内の組織編制の検討に学んだフレームワークを活用します。現在の業務における課題を明確にし、その課題解決のために適切な組織形態を提案できるようにしていきます。 分析の始め方は? 分析においては、定量的なデータが多いほど効果的であるため、定性的なデータも可能な限り定量化していくところから開始します。また、定性的なデータにおいても進捗が確認できる指標を検討し、目的やKPIを設定します。この設定に当たっては、現状把握を正確に行い、そのための課題や解決策を設計するために学んだフレームワークを活用していきます。

クリティカルシンキング入門

データ分析で未来を切り拓く学び

なぜ情報を分解するのか? 状況を解像度よく理解するためには、情報を分解することが重要です。特に、数字はグラフ化が可能なため、非常に有効な手段となります。分解を行う際にはいくつかの注意点があります。まず、加工の仕方としては、表に追加する欄を考えたり、相対値を計算したりするなどです。また、グラフを作成することで視覚を働かせることも効果的です。 多角的に見るための視点とは? 次に、情報の分け方についてですが、単に機械的に分けるのではなく、仮説を立てて特に影響力の大きい要素を優先して分解します。また、同じ状況に対して複数の観点から分解することも重要です。ある一つの視点だけでは状況を完全に把握できないことがあるため、他の視点も試すことが肝要です。 問題箇所を特定する方法は? さらに、MECE(Mutually Exclusive, Collectively Exhaustive)を意識して分解することで、問題箇所の特定を助けます。目的を明確にし、わかりやすい形で層別、変数、プロセスに分解すると良いでしょう。また、ロジックツリーを使って、仮説を立てた上でインパクトの大きい要因から切り口を考えます。この過程でアイデアを広げる際にもロジックツリーは有用です。 入学者分析で何が得られる? 具体的な応用として、入学生徒の性別、学力、地域、求めるものなどの傾向を分析することが挙げられます。これにより、入試広報活動を改善し、学校が求める生徒像に合致する生徒を獲得することができます。また、普段から数字をグラフ化する習慣をつけ、ロジックツリーなどを利用して考えを図式化することも有効で、完璧さを追い求めるよりも、実践と反復練習を重視することが大切です。

データ・アナリティクス入門

比較で深めるデータ分析の極意

比較で何が見える? WEEK1で学んだことにより、分析の基本は比較であるという理解が深まりました。例えば、A/Bテストでは、可能な限り条件を揃えた上で変更点を明示し、仮説を試すことによって、収集データの精度が向上します。これにより、データを活用した問題解決の要因分析と解決策の選択に深みが出てくると考えられます。 問題解決の流れは? 問題解決のステップには以下の要素があります。まず、問題箇所を明確化し(what)、次にその箇所を特定します(where)。続いて、原因を分析し(why)、最後に解決策を立案する(how)という流れです。特に重要なのは、whyでプロセスを細分化し、howでは複数の選択肢を洗い出して根拠に基づき絞り込むことです。 A/Bテストはどう? 手段としてのA/Bテストは、A案とB案を比較するためのテストで、できるだけ条件を揃えて比較対象を明確にすることが肝心です。このテストを用いて、データ分析の精度を高め、より良い問題解決に繋げることが可能です。 提案の工夫は? 私の業務ではWebマーケティングのような高速な仮説検証はできないものの、提案を行う際には、条件を可能な限り統一したプランAやプランBを提示し、違いを明瞭にするよう努めています。これにより、提案内容をブラッシュアップし、上長の意思決定のポイントを把握することができます。 予算説明の極意は? また、近々、来年度の予算計画について上長に説明する機会があります。その際は、過去のデータの傾向を踏まえて、変動の大きい部分を中心に複数のプランを提示します。プラン間の違いを明確にし、上長の意思決定を理解することで、計画の精度を高めていきたいと考えています。

データ・アナリティクス入門

データ分析の魅力に気付く学びの旅

データ分析の目的と仮説設定 データ分析においては、「目的」や「仮説」の設定が極めて重要です。解決したい問題を明確にし、まず結論のイメージを持つことが大切です。問題解決のステップをたどる際には、何が問題で、どこで問題が発生しているのか、なぜ問題が発生しているのか、そしてどのように解決策を実行するのかを考えます。そのため、データ分析は比較対象を明確にし、もし検証データがなければ用意する必要があります。 データ収集と加工の要点は? データを収集する際には、検証に不要な情報を極力除くことが重要です。集めたデータを元に、明らかにしたいことを基にデータを加工します。この際、実数と率の両方を確認することが必要です。また、やみくもに分析するのではなく、ストーリー性を持たせ、傾向を把握し、特に注目すべき箇所を明確にすることが求められます。 仮説検証で注意すべきポイント 仮説検証においては、可能性のある原因を網羅的に仮説として挙げ、そのうち原因である可能性が高い仮説を検証します。解決したい問題を明確にし、結論のイメージを持つことが再度重要になります。検証するためのデータがない場合は、担当部署に協力を求め、データを用意することが求められます。用意したデータは実数と率のグラフで表現し、新たな発見を見つけることを目指します。ただし、やみくもな分析は避けるようにしましょう。 視覚的表現の重要性とは 常に実数と率のグラフを頭の中で描くように心がけ、色々なグラフでデータを視覚的に表現することで、新たな気付きがあるかもしれません。このようにデータ分析においては、明確な目的と仮説、適切なデータの収集と加工、そしてストーリー性を重視することが重要です。

「可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right