クリティカルシンキング入門

データ解析で見つけた学びの旅

情報をどう分解する? 情報を解析するためには、その情報を分解する方法を学びました。まず、解析する全体の情報を定義します。このとき、いつからいつまでの情報を扱うのかを確認することが重要です。その上で、単に機械的に分けるのではなく、なぜそのように分ける必要があるのかを考え、複数の視点から情報を分解します。一つの視点での分解では、漏れや重複がないかを確認します。また、時間や場所を考慮したプロセスの分解を行い、比率や分布、変化率などを表計算で工夫することで、情報の正確な分解が可能になります。最初は大まかに分解し、解像度を上げるように進めます。 医療データ分析のポイントは? 医療業界のデータ分析について、二つの要点を実施します。まず、新規紹介患者数の分析です。2018年から2024年を対象にし、この期間には特に2020年から2023年のコロナ禍の影響を考慮する必要があります。データを患者の年齢、性別、疾患別、および病院の診療科や紹介元医療機関の規模(病院、地域クリニック)、さらには緊急性で分解し、変化率を算出します。これにより、患者属性や病院要因が新規紹介患者数に与える影響を明らかにし、コロナ禍による変動を正確に分析します。 外来患者満足度はどう評価? 次に、外来患者満足度調査の分析を行います。毎年実施されるこの調査の結果をもとに、単年度での解析のみならず、経年変化を評価して改善の有無を把握します。回答者を年齢、性別、通院歴(初診、再診)で層別化し、通院プロセスを受付、診察、待ち時間、会計などに分解して感想を解析します。過去3年のデータを用いて変化率を算出し、患者満足度の変化を定量的に把握します。これにより、外来プロセスにおける成果や改善点の特定と評価を行います。 ① 新規紹介患者数の分析では、2018年から2024年のデータを収集します。収集の際には、層別分析ができるように、患者データをリストアップし、疾患分類や医療機関の規模の基準を明確にします。整理されたデータは、解析しやすいように専用シートにまとめ、欠損データの程度を確認して、その分解が有意義であるかどうかを評価します。 ② 外来患者満足度調査の分析では、過去3年のデータを収集し、年齢や性別、通院歴、通院プロセスに基づいて解析できるようデータを整理します。また、来年度以降のアンケート項目や質問順序の見直しを行い、「何を解析するべきか」「なぜ解析するのか」を明確にした上で設計を行います。

データ・アナリティクス入門

論理で解く!現場課題の4ステップ

問題解決の手順は? 「問題解決の4ステップ」と「ロジックツリーを使った分解思考」が今週の学びの中で特に印象に残りました。まず「問題解決の4ステップ」では、「何が問題か?(What)」を明確にし、「どこに問題があるか?(Where)」でその範囲を絞り込みます。さらに、「なぜ起きているのか?(Why)」で原因を深堀りし、「どうするか?(How)」で具体的な対策を検討する流れを学びました。このフレームワークを用いることで、感覚や経験だけに頼らず、論理的に課題を捉えられると実感しました。 ロジックの整理は? また、ロジックツリーの手法では「モレなく・ダブリなく(MECE)」を意識しながら、問題やテーマを枝分かれさせ、整理する方法が紹介されました。例えば、現場で発生する遅延という問題に対して「人」「資材」「天候」などのカテゴリーに分解し、それぞれを詳細に検討することで、原因の見落としを防ぐことが可能となります。さらに、各要素を深掘りすることで、より具体的な解決策に結び付けられる点が非常に実践的だと感じました。 再現性は保たれる? これらの思考法を現場の課題整理に活用することで、感覚や経験に頼らず、再現性のある改善が実現できると考えています。たとえば、工期が予定よりも遅れている場合には、まず「What:何が問題か?」で遅延の事実を明確にし、「Where:どこに問題があるか?」で特定の工程に絞ります。そして、「Why:なぜ起きているのか?」で人員不足や資材納品の遅れ、天候の影響など原因をロジックツリーで分解し、それぞれに対して「How:どうするか?」の具体策を検討します。 トラブル対応は? 実際に現場で問題やトラブルが発生した際には、まず「何が問題か?」を関係者と共有し、事実を明確にします。その上で、問題のある工程や範囲を「どこに問題があるか?」の観点から洗い出し、ロジックツリーを活用して「なぜ起きているか?」を検証します。原因が複数考えられる場合には、MECEを意識して整理し、各要素に対して「どう対応するか?」という具体策を検討することが重要です。 習慣化は可能? 今後は、毎日の朝礼後など短いミーティングを通してこの4ステップを活用し、現場の問題を見える化・言語化する習慣を身につけたいと考えています。個人としても、業務日報にこのフレームワークを取り入れることで、思考力と実践力をさらに高めていきたいと思います。

リーダーシップ・キャリアビジョン入門

キャリアの未来を拓く4つの理論

講座の狙いは何? 今週の講座では、「代表的なキャリア理論を知る」ことに焦点が当てられました。以下にその内容をまとめます。 キャリアの価値基準は? まず、キャリア・アンカーについてです。これは、エドガー・H・シャイン博士が提唱した理論で、自己分析や他者からのフィードバックを通じて、自分の仕事における価値観を明確にする方法です。キャリア・アンカーには8つの種類があります:特定専門分野、全般管理コンピタンス、自律・独立、保障・安定、起業家的創造性、純粋な挑戦、奉仕および社会貢献、生活様式です。これらを確認する手順として、自己診断やインタビューを行い、それらを考慮してキャリア開発を決定することが推奨されます。この理論は、現在のキャリアや人生の判断基準として役立つ一方で、制約にもなる可能性があります。 生存戦略はどう挑む? 次に、キャリアサバイバルについてです。これは、職務と役割の戦略的プランニングに関する分析手法で、環境変化や複雑な人間関係に対応するために重要です。組織が自分に求めるものを把握し、変化を予測して対応するための計画を立てることが求められます。 今後のリーダー像は? 続いて、これからのマネジャーとしてのあり方です。急速な変化に対応するために、自己変革を継続することが大切とされています。必要なスキルには個人としてのスキル、仕事に必要なスキル、テクニカルスキル(論理思考力、分析力)、ヒューマンスキル(コミュニケーション、巻き込む力)、コンセプチュアルスキル(目標設定、ビジョン設定)などがあります。 指導法はどう使う? 最後に、リーダーシップのスタイルについてです。リーダーシップは、状況や個人の特性に応じて活用の仕方を変えることが重要とされています。具体的には、指示型(具体的な指示を出す)、コーチ型(問いを立て、意見を引き出す)、支援型(働きやすい環境を整える)、委任型(権限を委譲する)のスタイルがあります。 支援策はどう考える? これらの理論を踏まえた上で、チームメンバーのキャリア開発を支援するための具体的な行動として、自己診断や個別インタビューの実施、キャリア開発計画の策定、定期的なフィードバックセッション、環境変化の情報共有、リーダーシップスタイルの適用が挙げられています。これにより、メンバーのキャリア開発を支援し、チーム全体のパフォーマンスを向上させることが目指されています。

データ・アナリティクス入門

データに宿る成長ストーリー

全体の流れはどう? 全体の流れとしては、WHAT→WHERE→WHY→HOWの順で進める点が印象に残りました。ただ単にデータを集めるのではなく、ひとつひとつの分析がストーリーとして意味を持つように、傾向をしっかり掴むことが大切だと感じました。 問題は明確か? まずWHATの段階では、今解決したい問題を明確にし、目標となる結論やイメージをもっておくことが重要です。何のためにデータを扱うのか、最初に目的をはっきりさせることで、分析全体の方向性が定まります。 どの候補を選ぶ? 次にWHEREのステップでは、複数の候補を出し、解決に役立ちそうなポイントやデータが取得可能かを検討します。単独で見る方法や、ツリー・組み合わせといった整理手法を用いながら、どの観点に重点を置くかを決めていくとよいでしょう。 原因は探れた? さらにWHYのフェーズでは、考えられる原因をできるだけ多く、また網羅的に仮説として挙げることが求められます。どんな要素が問題に影響を及ぼしているのか、広い視点で捉えることが分析の精度を高める鍵となります。 数値は何を示す? また、データを見る際には実数と比率の両面から代表値などの数値に注目し、明らかにすべきポイントを意識する必要があると再認識しました。どのデータが問題解決に直結するのかを見極めるために、どんな情報をどう加工すべきかを事前に考えておくことが重要です。 目的は明確に? 特に、日々の業務では「言語化しなくても大丈夫」という考えに陥りがちですが、データを扱う際には必ず「何をしたいのか」という目的を明確にすることが不可欠だと感じました。また、データ収集時にも最終的なアウトプットのイメージを持つことで、やみくもな収集を避け、意図のあるストーリーを先に構築する姿勢が大切です。 フォーマットは有効? 今後は、以下のフォーマットを活用していきます。まず、解決したい問題を最初に記述し、次にストーリーや考え方、データの集め方・分析方法の全体像を示します。その上で、WHAT、WHERE、WHY、HOWの各パートを用意して進める手法を徹底していきたいと思います。 仮説は多角的? 最後に、仮説思考における「複数と網羅」という視点が非常に印象的でした。インパクト、ギャップ、トレンド、ばらつき、パターンなど、さまざまな角度から物事を見る姿勢は、今後の成長に大いに役立つと感じています。

データ・アナリティクス入門

比較が拓くデータの新常識

データ比較はどう進める? 分析の基本原則は「比較」であり、まずはデータを比較する目的に立ち返ることが大切だと感じました。データ収集の前に仮説を設定し、その仮説を検証していくプロセスの中で、データをどのように加工して示すかという点が今回の学びのポイントでした。加工の視点としては、大きく代表値と散らばりの2つに分けられ、代表値には単純平均、加重平均、幾何平均、中央値があること、そして散らばりについては標準偏差で表現されることを学びました。 外れ値の対応はどうする? 今までは単純平均しか扱ったことがなく、重みを考慮した平均やべき乗を利用した手法は初めて触れる内容でした。また、平均値だけでは捉えきれない外れ値に対しては中央値を用いることで対応する方法がある点も新鮮でした。標準偏差については、なぜルートがつくのかという計算過程が理解でき、正規分布の場合にデータの約95%が±2個分の範囲に収まるという納得感を得ることができました。これまで平均を取るだけで思考が止まってしまっていた部分を、散らばりの視点からデータ活用の具体的なイメージに結び付けることができました。 移住データで何が見える? また、人口減少対策において活用される移住者データを分析することへの関心が高まりました。各市町村の移住者データを様々な属性で分析し、特に年齢や家族構成の散らばりを調べることで、どの施策に注力すべきかを推測するひとつの手法となり得ると感じています。現状、移住促進施策はUターン促進とIターン促進の大別がなされており、例えばUターンでは地元を想う集まりの取り組みを強化し、Iターンではボランティアや副業などにより継続的な関わりを持つ関係人口への支援を強化するという方針です。こうした大まかな区分に加え、より具体的な属性の分析が進むことで、移住理由を数値的に捉え、具体的な施策検討に役立てることができそうです。 今後の分析計画は? 今後は、所管部署に対して詳細な個別データの入手が可能かどうか問い合わせる予定です。データが手に入れば、エクセルを用いた分析に取り組みたいと思っています。特に県全体と沿岸地域の違いを明らかにすることで、一緒に施策を進める市町村の担当者や移住コーディネーターの方々の取り組みにも影響を与えられるのではないかと感じています。5月20日(火)に、所管部署の担当者が意見交換に来訪する予定のため、その際にデータ入手の依頼を進めるつもりです。

データ・アナリティクス入門

問題解決力を鍛える!仮説思考の体験談

仮説思考をどう実践する? ライブ授業を通じて仮説思考や問題解決のプロセスを実践した結果、自分がどの部分を理解しておらず、どのような思考のクセがあるかを把握できました。知識や情報が頭に入っていても、実際にそれを使ってみると、自分の理解が甘い部分や、学んだことを目の前の課題にどう適用するかの難しさに気づかされます。したがって、学んだ内容は業務内外で積極的に使ってみることが大切だと感じました。 思考のクセをどう克服する? 特に自分の思考のクセでは、仮説立案の際に目の前のことにとらわれすぎて、要因を広げすぎる傾向があることが分かりました。ライブ授業の課題においても、例えば「8月の売上が昨対80%」という現状を経営者の立場で考える際、一昨年対比では大差がなく、昨年が特需だったのではないか、時系列に見た時期のずれがあり、年間で見れば問題ないのではないか、と考えてしまうことがあります。このような状況では、もともと課題なのか課題ではないのか、という判断が必要になることも学びました。目の前の課題が「8月単月の売上減少」なのか「長期的視点での経営インパクト」なのか、それ以外の課題も考慮し、分析の目的を明確に定義することの重要性を感じました。 データ分析はどう進める? 様々な部署のデータ分析案件においては、まず最初に課題を明確にすることを心がけています。誰にどんなアクションを求めているのかを明確にして取り組むことが大切です。例えば、「商品Aのリピート率が課題で分析したい」という依頼があった場合、新規とリピートを比較し、なぜリピート率を上げたいのかという「なぜなぜ分析」を依頼者と一緒に考えるようにしています。その答えが売上アップだった場合、新規とリピートに分解した際に新規のインパクトが大きい可能性もあることに気づけるようにします。依頼された時点で依頼者が既に課題を分解して要因を特定している場合、特に注意が必要です。分析結果をもとに誰にどのようなアクションを起こしてほしいのか、共通認識を持って進めています。 課題擦り合わせの重要性とは? 事業伴走においても、まず最初に課題の擦り合わせを行います。自身で仮説を広げることはもちろん、「なぜ」を臆せずに聞くことを大事にしています。また、各部門の事業理解が深ければ筋の良い仮説を立案する上で役立つため、各部門の経営会議資料を読み込み、事業の収益構造や現状課題への理解を深めるようにしています。

マーケティング入門

実践から見えた顧客理解の極意

誰に売る意義は? 今回の講義では、「誰に売るか」を意識する重要性について学びました。まず、商品やサービスをどのような用途で使うのか、また、どんな価値を求めるのかをしっかり把握することが大切であると感じました。「思う」や「想像する」を超えて、実際のニーズを「知る」ことがポイントだと実感しました。 新しい提案は? また、具体的なアクションとして、身近な商品や自社商品に対して新しい使用シーンを考えることが紹介されました。これにより、現在の使い方から一歩進んだ提案ができる可能性を見出すことができます。 市場のターゲットは? セグメンテーションとターゲティングの考え方も印象に残りました。不特定多数の人々を、人口動態、地理的、心理的、行動変数といった切り口でグループ分けし、その中から具体的に標的となるグループを選ぶという流れは、能動的な「選ぶ」作業であり、戦略的なアプローチが求められます。また、ターゲット評価基準として、実際の市場規模、成長性、競合状況、優先順位、到達可能性、反応の測定可能性(6R)を天秤にかける手法が参考になりました。例として、あるテーマパークの若年層からファミリー層へのシフトが示されており、一人の中にも複数の志向が存在すること、そして魅力的な市場には競争が激しいことを改めて認識しました。 製品の差別化は? さらに、ポジショニングでは、競合との差別化ポイントを明確に打ち出し、顧客に自社製品の魅力をしっかりと伝える手法を学びました。具体的には、自社製品の特徴をリストアップし、顧客ニーズに沿った訴求ポイントを2つに絞り、競合製品との差が分かりやすい軸を選定するという流れです。例として、ある缶コーヒーの商品が「すぐ買える」という利便性と、別の飲食店が提供する「コストパフォーマンス」が挙げられており、顧客がどこに共感するかを意識する重要性が示されました。 戦略の見直しは? 最後に、現在企画運営中の海外赴任前研修について、セグメンテーション、ターゲティング、ポジショニングの各視点から再評価する必要性を感じました。これまでの学びを活かし、顧客にとって何が魅力なのか、また取りこぼしている可能性があるポイントはどこかを、既存の顧客の声や商談の記録などから振り返ってみたいと思います。そして、自社の強みと顧客のニーズのどちらを優先して考えるべきか、最適なアプローチは何かについても引き続き検討していきます。

クリティカルシンキング入門

相手に伝わる論理的コミュニケーションスキルの磨き方

伝えるスキルとは何か? 相手に何かを伝える際に一番重要なのは、「何を伝えたいのか、何を理解してもらいたいのか」を明確にすることだと感じました。そのためには、感情や直感に頼るのではなく、論理的な根拠に基づいた主張を準備する必要があります。さらに、その際には相手の視点も考慮するべきです。こちらがどんなに論理的な準備をしても、受け取る側の準備が整っていなければ、それは「伝わっていない」のと同じです。相手の理解レベルに合わせて情報を構築することが求められます。また、「対話」の意識も大切です。相手の反論も想定しながら、柔軟に意見を伝える姿勢が必要だと思いました。論理的な主張を十分に準備できたなら、それをいかに簡潔に表現するかが重要です。長々と説明することなく、効果的に伝える技術が大事だと考えます。 IT業界での活用法とは? 私はIT業界で働いています。「他者に理解・納得してもらうスキル」はさまざまな場面で役立ちます。例として、顧客の要求仕様のヒアリングがあります。これは相手がITに詳しいとは限らないため、相手の理解レベルに合わせて、意図を明確に整理し伝えることが求められます。また、コードレビューでも役立ちます。自分がレビューする際も、他者からレビューを受ける際も、コードの意図を明確に整理し、理解可能な形で伝えることが重要です。プロジェクトの状況報告でも同様に、相手がそのプロジェクトに詳しくない場合を考慮し、論理的かつ簡潔に情報を伝えなければなりません。さらに、日常のコミュニケーションや後輩指導においても、このスキルは非常に役立ちます。 スキルを向上させるには? では、「他者に理解・納得してもらうスキル」を身に付けるためには、どのような行動計画が必要でしょうか。まず第一に、その手法、つまり「基礎」を身に付けることが必要です。具体的には、MECEやピラミッドストラクチャーといった分析や説明の手法を学びます。次に、これらの手法を実際に使ってみます。通常の会議やプロジェクト報告、レビューなどの場面で、それを使用することを意識して準備します。基礎を身に付け、実践する場を確保したうえで、反論や疑問にも適切に対応する意識が重要です。そして、実践後には振り返りを欠かさず、成功した部分や改善が必要な箇所を再認識し、次に活かします。こうしたプロセスを繰り返すことで、「相手に物事を伝える」スキルを確実に身に付けていきたいと考えています。

データ・アナリティクス入門

仮説とデータで勝つ戦略

仮説は本質か? WEEK4では、仮説を立てそれをデータで検証する思考法を学びました。仮説は「感覚」ではなく、根拠ある問いとして設定し、目的に合ったデータを収集・分析することが大切であると理解しました。たとえば、あるターゲット層に向けた広告の効果については、申込経路や具体的な単価など、定量的なデータをもとに検証することで、説得力のある改善策を導き出すことが可能だと感じました。 4Pで本質見出す? また、マーケティングの4P(Product、Price、Place、Promotion)の視点から仮説を組み立てることで、問題の本質や見落とされがちな課題が浮かび上がることにも気づかされました。特に、費用対効果を比較する際は、単なる表面的な数字ではなく、単位あたりの価値を基準に判断する重要性を実感しました。 検証と戦略は? この一連の流れ、すなわち仮説の設定、データの収集、検証、そして改善への取り組みは、単なる分析作業に留まらず、意思決定や戦略立案の基盤となることを再認識させてくれました。実際に現場で改善を実行するためには、データを正しく読む目と、仮説を深める思考の両方が必要であると感じました。 販促成功の鍵は? さらに、講師養成講座の販売促進においては、WEEK4で得た知見が「感覚」ではなく根拠ある判断を下すための基盤として活用できると考えます。広報活動における意思決定やターゲットの把握、また販促効果の見直しなど、戦略設計全体に渡り、大いに役立つと感じました。 計画実行は可能か? また、マナー講師養成講座の促進に向けた具体的な行動計画を4週間で立てました。 まず、Week 1では、ターゲット別に仮説を設定し、販促チャネルの効果についても仮説を立て、データ収集の項目を決定しました。 次に、Week 2では、過去数年間の申込者データを整理し、広報媒体ごとの広告実績を収集、さらに簡易なアンケートも実施しました。 Week 3では、ヒストグラムや円グラフなどを用いてデータの可視化を行い、費用対効果の高い媒体を絞り込むと同時に、仮説の正否を検証し、重点ターゲットを確定させました。 最後に、Week 4で、ターゲット別のプロモーションを再設計し、重点媒体への予算を再配分するとともに、効果検証体制を整えることで、改善策を実行に移しました。 この行動計画は実効性が高いと自分なりに評価しています。

戦略思考入門

競争から抜け出す差別化戦略のヒント

誰に差別化すべき? 差別化について考える際、「誰に対して差別化を行うのか」を明確にすることが重要です。多くの人が、「差別化 = 競合他社との差別化」と考えがちですが、ビジネスにおける戦略は単なる競合への対抗ではなく、顧客に自社を選んでもらうためのものである必要があります。そのため、自社のターゲット層をしっかりと特定し、その層に響く差別化の施策を考える必要があります。 他業界も見るべき? 差別化の施策を考える際には、他業界にも目を向けることが大切です。つい自社と競合他社だけにフォーカスしがちですが、異業種の企業も顧客の選択肢となることがあります。そのため、業界を超えた競合を把握し、差別化に取り組むことが求められます。 施策は実行可能? また、施策の実現可能性と模倣困難性も重視すべきです。どれだけ優れたアイディアでも、企業のリソースやスキルで実現できなければ意味がありません。また、簡単に真似されてしまうような施策では効果が薄いです。そのため、自社で実行可能であり、かつ他社が容易に真似できない施策を考え続けることが重要です。 戦略の見直しは? 我々の会社は、かつて業界内で優位性を保っていましたが、競合製品の普及や低価格化の流れによってその優位性が失われつつあります。VRIO分析を行った結果、競争劣位か競争均衡のレベルに留まっていることが分かり、新たな戦略を考える必要があります。社内では、製品開発のアイディアを全社員から募るシステムを活用して、競合他社の製品情報や顧客のニーズを把握し、差別化のアイディアを積極的に提案していきたいと考えています。 競合はどう捉える? さらに、私が携わるオウンドメディアの運営でも、多様な企業が同じテーマでメディアを展開しています。そのため、競合となり得るメディアをしっかりリサーチし、差別化を図る必要があります。特に、顧客の疑問を解決する専門知識や、実際の製品使用による課題解決の事例紹介を強みとして生かしていきたいです。 常に考え続ける? 差別化のアイディアを即座に出すのは難しいと感じますが、考え続け、アウトプットを続けることでスキルは育つと信じています。小さなアイディアでも思いついたら積極的に発言し、フィードバックを得ることでより良い施策にしていきたいと考えています。他人と意見を交わしながら考えることを習慣化し、個人の成長と共に会社の成長に貢献していきます。

リーダーシップ・キャリアビジョン入門

リーダーに必要な3つの要素を探る

リーダーの要素は何か? 「リーダーとは、~~な人である」の「~~」に当てはまる言葉を考え出すことで、自分がリーダーに必要だと考える要素を言語化することができました。「なぜこの人はリーダーシップがあるのか?」を考察する際、行動、能力、意識の3つの要素に分類してみると、この3つが揃うことが重要であると説明できると感じました。これらの要素は互いに影響し合うものだと考えます。 行動と意識はどう連動する? 行動については、ビジョンを示したり、夢を語ったりするような行動は、「こうしたい」という自分の欲求から引き起こされ、この欲求は「意識」と強く関係しています。能力とは、たとえば決断したり、説得したりするスキルのことですが、これは後から磨くことが可能です。行動を続けることで学び、さらに能力を向上させることができます。さらに、意識が強ければスキルを磨くモチベーションも続き、能力は行動や意識と密接に連動しています。意識とは、たとえば熱心さや明るさ、オープンであること、度量の広さといった特徴を持っていますが、これらは生まれつきのものと思われがちです。しかし、日々の行動を通じて習慣化されるため、行動と強く連動します。 リーダーシップをどう身に付ける? 「どうしたらリーダーシップを身につけられるか?」という相談に対しては、行動、能力、意識の3つの要素を使って解説し、現時点での自分の強みやこれから磨きたい部分を中心に対話ができると思います。また、新しいメンバーとのコミュニケーションにおいては、仕事の目的と完成形を確認する(What)、期限を確認する(When)、方法を考える(How)、そして最適な進め方を対話で引き出すことが重要です。さらにこの仕事を通じて得られる良いことに関しても一緒に話し合い、本人の「Want」を引き出すことが重要ではないかと感じました。このような対話を通じて深い理解と納得を得ることが重要です。 対話の重要性とは? 「頭合わせ」を怠らず、対話によって丁寧に進めることが、効果的なリーダーシップにつながると考えます。そのためには、1対1の対話を必要に応じて定期的に設定することも意識しています。特に新メンバーには、考えを共有し、どこまで理解しているかを確認することが求められます。このようにメンバーに自身の考えを表明し、行動を通じて示していくことが、自らのリーダーシップの深化につながると考えています。

データ・アナリティクス入門

グラフと平均値で掴む分析術のコツ

グラフは何を示す? グラフの活用法とその分析時の手法について考えます。まず、円グラフは各要素の割合を確認したい場合に使用します。一方、ヒストグラムは全体のばらつきを視覚的に把握したい時に便利です。グラフを活用する際は、事前に仮説を立て、その仮説に基づいて予測データと実際のデータを比較し、深堀することが重要です。 平均値はどう使う? 分析手法としては、様々な平均値があります。単純平均はただ平均値を求める方法です。加重平均は重みを考慮して算出され、例えば東証株価指数がこの方法を用いています。幾何平均は成長率や平均何倍になるかを知りたい時に使用されます。外れ値の影響を避けたい場合は中央値を用いるとよいでしょう。また、標準偏差を利用することで、データのばらつきを把握できます。標準偏差が小さいほどデータは均一であることを示します。これに基づき、2SDルールでは95%のデータが大よその範囲内に収まるとし、5%のデータは外れ値とされます。 リスクはどう把握? 施設のポテンシャルや価格の分布を分析する際には、ヒストグラムや散布図を使うことで、戦略に対するリスクを特定できます。例えば、ポテンシャルの高い施設で高コストの外れ値がある場合、戦略的値下げの必要性を検討する余地があります。また、小さい施設で安価なコストの外れ値はベンチマークとして他施設に引き合いに出されるリスクとなる可能性があります。 医療データの精度は? 医療機器のデータ精度を分析する際、標準偏差を利用して精度の精確性を確認することができます。業界の標準として、変動係数CVが2%以下であれば精度の担保がされているとされています。変動係数は標準偏差を平均値で割ることで算出されますので、まず標準偏差を求める必要があります。特に機器の精度が外れ値を持たず、許容範囲内に収まることが求められるため、標準偏差の知識は重要です。 適正価格はどう算出? 価格交渉の際、統一グループやGPO施設カテゴリ内の平均価格やベンチマークの引き合いがあります。この際、どの「平均」が使用されているかを確認し、データを鵜呑みにせず、グラフや散布図、加重平均や中央値を用いて適正価格を示すことが重要です。 仮説はどこから? 最後に、分析に取り掛かる前に仮説を立てることが大切です。仮説に正解はありませんが、経験に基づいた想像力を活かし、いくつも仮説を洗い出すことが有益です。
AIコーチング導線バナー

「可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right