クリティカルシンキング入門

具体と抽象で織りなす理解の旅

新しい考え方は? これまで、フレームワークやその活用経験が物事を考えるために必要だと考えていましたが、今回の学びで、根本的な考え方自体を見直す必要性に気づかされました。 分解のコツは何? 特に、物事を分解して考える際には、具体的な面と抽象的な面のバランスをとりながら、上下左右に視点を移動して検討する手法が印象的でした。この方法により、考え方に偏りが生じるのを防ぎ、全体像を捉えやすくなると感じました。 比較検証はどう考える? また、MECEや3つの視といった考え方は、他社製品や技術との比較検証にも有用だと思います。MECEで必要な比較項目を洗い出し、3つの視では相手に合わせたクリティカルな要素を抽出することで、プロとコンの両面を効果的に整理できると考えています。 意見交換で工夫は? これらの手法は、提案や報告、さらにはプロジェクト内での意見交換の際にも役立つと実感しました。相手に合わせたアプローチを行うためには、柔軟に視点を変え、考え漏れがないよう努めることが不可欠であると感じています。

データ・アナリティクス入門

データ分析と仮説思考で売上UPを目指す

3Cと4Pをどう活用する? 複数の仮説と網羅的な思考を持つことを学ぶことができました。また、市場、競合、自社(3C)、製品、価格、場所、プロモーション(4P)を意識した仮説構築の重要性も理解しました。データの収集方法については、本当に対象者からのデータなのか、アンケートなのか、口頭なのか、数値なのか、きちんと比較するための収集といった意識も重要だと感じました。 売上向上のための分析法は? 現在、売上が思うように伸びず、分析検証フェーズに入っています。そこで今回学んだ仮説の立て方やデータの取り方を意識しながら、数値を見ていきたいと思います。また、前回のグラフの最適化も考慮に入れつつ、精度の高い分析・検証を行いたいです。 新たな施策提案に必要な視点 さらに、昨年10月から今年6月までの流入数や購入数、広告費などの数値をしっかりと活用し、相関や因果関係を見つけ出し、仮説思考を組み合わせて新しい施策や提案を行いたいと考えています。様々な仮説を一つずつ検証し、網羅的な分析も合わせて行いたいと思います。

データ・アナリティクス入門

データ解析の「やったつもり」を脱却する方法

直感的な解析で本当に大丈夫? 本講座の学習と総合演習を通じて、"直感的なデータ解析はNG"であることを強く感じました。合計や平均などの一般的な解析手法を反射的に実施してしまう癖があり、それらを実施しただけで"やったつもり"になってしまう場面があることを再認識しました。 ビジネスに繋がる数字とは? 業務において求められているのは、誰でも分かる当たり前の数字を出すことではなく、ビジネス上の優位性を生む数字です。例えば、競合他社より売り上げを伸ばす、納期や費用を圧縮するといった具体的な目標に直結する数字が求められます。今後は、どのデータをどう活用すればこうした差を生む数字を導き出せるかを整理し、解析業務の棚卸を行いたいと考えています。 データの棚卸しで見直すべき点 具体的には、定型業務の棚卸を実施し、これまで報告してきたデータの有効性を見直す予定です。これまで蓄積してきたデータが、競争上の優位性を生む数字となっているかを評価し、有効であれば継続し、効果がなければ見直しを行い、代替案を提案します。

データ・アナリティクス入門

新しい方法論で業績アップを狙う!

分析の重要性とは? 今週の学習で重視したポイントは、分析は比較であるということです。また、「Apple to Apple」を意識し、適切な比較要素を抽出することも重要です。過去の方法が最善だったのか、新たな方法論があるのか、今後の講義を通じてさらに学びを得たいと考えています。 業績分析をどう活用するか? 私は、自部署の業績分析や戦略策定にこの学びを活用しようと考えています。新規案件の獲得状況や既存案件のプロジェクト収支など、必要な情報を精査し、分析を進めたいと思っています。この分析を基に、新規提案活動、適切なリソースの配置、社員教育など、部門運営の戦略立案に役立てることを目指しています。 情報収集の方法は? はじめに、営業部からのパイプライン情報の共有、リソース計画、メンバーの稼働率、プロジェクトステータス、メンバーのスキルマップなど、各方面からの情報収集を徹底することが必要です。これらの情報を活用し、現状の組織における問題点を把握し、効果的な戦略策定につながるよう努めたいと考えています。

マーケティング入門

顧客の本音に気づく瞬間

ブランド印象はどう? ネーミングやパッケージが実物と乖離している場合、ネガティブな印象を与える可能性があると感じました。さらに、商品だけでなくサービスにおいても、期待を裏切ることがブランド価値の毀損につながると学びました。また、同じものであっても提供方法や組み合わせ次第で新たな魅力が生まれること、顧客の声を反映したものとそうでないものとで売れ方に違いが出ること、そして真のニーズを捉えたものと顧客の意見をそのまま反映したものでは、本質が異なるということを理解しました。 現場で何を学ぶ? 営業現場では、提案が実現しなかった場合こそ、顧客の真のニーズを再度見極める機会として活かしたいと思います。新規事業の企画においても、顧客ターゲットの設定や、どのようなサービスが受け入れられるかを判断するためには、顧客や関係者との対話を重ねることが不可欠であると実感しました。 魅せ方の秘訣は? また、商品の魅せ方についてアイデアを出す際に、陥りやすいポイントがあれば把握しておきたいと考えています。

クリティカルシンキング入門

ブロック図で見える本当の自分

無意識な思考整理は? 自分でも無意識に持っている思考パターンがあることに気づきました。常に、自分の考えが組織の目的からずれていないか、正しい方向へ向かっているかを問い直す必要性を学びました。 情報整理の基本は? そのための基本として、ブロック図のような形式で思考を階層化し、抜け漏れなく情報を整理する方法が大切だと感じています。客観性を鍛えることで、自分固有の考え方の癖から離れることができ、日々のアウトプットや業務においても実践できると実感しました。 多様な視点を取り入れる? 部下や上司へ提案する際は、上記の方法で整理した考えをもとに説明するようにしています。提示前の情報収集段階では、自分の視点だけに囚われず、反対意見を持つ人々を含めた幅広い視点から情報を集めることが大切です。そして、その集まった情報を階層ごとに客観的に分類しながら考えることが理想的です。 適切な伝達方法は? 目的が明確になったら、適切なレベルの情報を用いて分かりやすく部下や上司に伝えるよう努めています。

データ・アナリティクス入門

比較が教える新たな発見

分析の視点は正しい? 分析を行う際、「分析は比較なり」という視点を常に意識することが大切だと感じました。まず、分析の目的を正確に把握し、提示先の求める結果と意識を合わせることの重要性を学びました。また、比較する目的に沿って適切な軸を設定する必要性も再認識しました。 意見交換はどう進む? また、さまざまな業界の方々のご意見を聞くことができ、グループワークでは意見交換が活発に行われ、非常に助かりました。 データの意味は十分? 私はIT業界で、顧客向けのデータ分析やBIツールの活用を行うことが多いため、依頼内容をただ見える化するのではなく、分析の目的をしっかり意識し、データの意味を考えた上で最適なグラフを選択する必要性を感じました。そのため、データの格納方法や保持方法を含めたトータルな提案力を高めたいと考えています。 業界課題はどう見る? さらに、さまざまな業界が抱える課題や、それぞれがどのようにデータ分析を実施しているのかについても非常に興味深く感じました。

データ・アナリティクス入門

効果的な分析方法を学び成功へ一歩前進

効果的な分析手法を学ぶには? 分析を行う際に、ただ漠然と進めるのではなく、ステップを考え、ロジックツリーを用いることやMECEを意識した切り分け方を学んだおかげで、より効果的な分析ができるようになった。これからは慣れに頼らず、きちんと目標を持って分析を行っていきたい。 売上向上への試行錯誤とは? 売上が伸び悩む中で様々な試行錯誤を続けているが、前回学んだ「目的」「仮説」「数字の性質」に加えて、今回の「ステップ思考」「ロジックツリーでの展開」「MECEを意識した切り分け」を活用し、過去の数値分析を再度行いたいと思う。 新規施策提案のためには? 新規施策を提案する際には、目標となる部分と仮説、そしてそれがステップ思考になっているか確認し、ロジックツリーを実際に作成して客観性があるかどうかを見極める。また、MECEを意識することで、意味のある分析・評価に繋がっているかどうかを自問自答していきたい。そして、その提案をメンバーや上層部に向けて発信していく予定だ。

戦略思考入門

課題解決を導くフレームワーク活用術

なぜ課題の抽出が重要なのか? 課題や論点の抽出において、もれなく重複なく進めることと、解決策を模索することの重要性が強調されています。この過程では、ステークホルダーと足並みをそろえて議論を深めるために、フレームワークの活用が有益です。ただし、各ケースに応じて最適なフレームワークを選択する必要があるため、事前の認識合わせが不可欠です。 フレームワーク活用の意義とは? 自社の営業戦略や施策実行の判断に際しても、フレームワークに基づくディスカッションとアウトプットの作成が、論点の漏れを防ぐ役割を果たします。また、このプロセスを通じて自社商品の特徴を再評価し、環境分析を実施します。 効果的な会議準備方法は? 普段の情報共有の場とは異なる長めの時間を設けて課題整理のディスカッションを行うことが提案されています。その前準備として適切なフレームワークを決定し、可能な範囲でアウトプットを準備することが求められます。これは、会議を効果的に進めるための重要なステップです。

戦略思考入門

トヨタ式自動化で仕事の質が進化!

最適な方法とは? トレードオフについて学ぶ中で、相対的なメリットをどちらか一方だけ追求することにばかり気を取られていました。しかし、トヨタの自動化の考え方に触れ、目から鱗が落ちる思いでした。現状に対して最適な方法とは何かを常に考えることが大切であり、そのマインドを身につける必要性を痛感しました。 ミッションの見直しは? 時間は有限で、やるべきことをひたすらこなすことに追われていた日々ですが、学びを深める中で現在の仕事において捨てても良いかもしれないミッションがいくつか浮かびました。これらのミッションを捨てる理由についてもしっかりと考えていきたいと思います。 来季はどうする? まずは今年のすべてのミッションをしっかりとこなすことが目標です。しかし、来季も同じことを繰り返すだけで良いのか?それが本当に必要なのかを見直し、惰性に陥らないよう再検討して企業に提案したいと考えています。現状と来季の効率性に変化をもたらし、それを実感できるようにしたいです。

クリティカルシンキング入門

退職分析に新たな視点を見出した学び

手法が偏っている? MECEや分析は普段の業務から実施していますが、その手法が偏っていることに気づきました。より幅広な視点からデータ分析を行い、矛盾や重複、不足がないように、手を動かしながら進める必要があると感じています。 新たな分析切り口とは? 具体的には、現在の業務で組織内の退職者分析を行っています。これまでは勤続年数や年齢、入社区分、役職、評価で分析していましたが、この方法では単純なレンジでまとめていました。今後は仮説を立てつつ、データの特徴が掴めるような切り口を工夫したいと思っています。また、AI(CopilotやChatGPT)を活用して、自分では気づかない切り口も探していきたいです。 分析方法の見直しは必要? 退職分析チームとミーティングを行い、これまでのステレオタイプな分析方法を見直すことを提案しました。特に、管理職者へのインタビューを元に仮説を立て、新卒若手かつ高評価者の退職傾向やその時期を特定する努力をしています。

マーケティング入門

魅力が一目で伝わるコツ

どうして深掘りが必要? 顧客がある程度の満足度に達すると、自分自身でも本来のニーズに気づかなくなり、直接のヒアリングだけでニーズを把握するのは難しくなります。そのため、単なる質問だけでなく、訪問や街頭での行動を観察し、より深くニーズを探ることが重要です。また、商品を売り込む際には、サービス内容や機能がひと目で伝わるような印象的なネーミングが、顧客の興味を引く鍵となります。 上層部へ伝える秘訣は? 一方、提案を受ける側は、自身のニーズを言語化できると知らずにいるケースがあります。投資案件を上層部に提案し、承認を得るためには、その役員がこれまでどのような取り組みを行ってきたか、どの部分に現在力を入れているか、普段の言動など、細かな情報を収集することが必要だと感じました。また、案件を説明する際に長々と話してしまうのではなく、まずはその案件の魅力が直感的に理解できるテーマを最初に提示することで、上層部により効果的に伝える方法を今後試してみたいと思います。
AIコーチング導線バナー

「提案 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right