データ・アナリティクス入門

物流の待機料問題を解決する分析手法の習得

分析の基本とは? 「分析とは比較である」という教えについて学びました。これは、課題を要素に分解して整理し、個人や会社の状況に応じた基準(目的)を設けて、その要素と基準を比較することを意味しています。基準を「達成すべき目的」とすると、各要素の優先順位や捨てるべきところが明確になってくると感じました。逆に、基準に満たない要素は改善策の検討対象として捉えることができることも学びました。 物流業界での分析方法は? 私は物流会社で働いており、2024年問題の一つとして「待機料」の明確化が挙げられます。待機という問題を要素(要因)に分解し、それらを自社都合と輸送会社都合にグループ化することで、分析の対象が明確になると考えました。 データ活用で何が変わる? 現在、導入済みのアプリから取得できるデータを使い、要素を整理して分析対象を決定する予定です。本講座を通じて、適切な分析方法を理解していこうと考えています。 待機料と時間の相関は? 具体的には、待機料の標準偏差値を算出することで支払い金額の正常範囲を決定し、異常値はチェックする体制を構築します。また、待機料の発生要因と待機時間の相関関係を数値化し、どの要素に対して改善策を打つべきかを社内で共有します。

戦略思考入門

狭い視野を超える差別化チャレンジ

顧客視点は十分? 差別化を考える際は、まず顧客の視点とその価値を深く理解することが大切です。その上で、その取り組みが持続可能であり、他社には真似できない希少性を持っているかを確認します。また、業界内に留まらず、他業種の視点も取り入れることで、より広い視野から検討することが可能となります。 狭い視野をどう変える? ワークを通じて、自分がこれまで考えていた視点が非常に狭い範囲に限定されていたことに気づかされました。そこで、3つのルールに基づき、自社や自分自身を客観的に見直すとともに、VRIOのフレームワークを活用して「差別化」について検討するトレーニングを実施したいと考えています。 新商品の差別化は? 普段、業務の中で意識してきた差別化の取り組みは少なかったものの、新商品のプログラム開発もまた一つの差別化と捉えることができます。まずは、フレームに沿って市場や顧客のニーズ、そして部署の強みを見直しながら検討し、他業種の事例を取り入れて新商品を企画してみたいと思います。希少性という視点には難しさもありますが、強みをしっかりと落とし込むことでその解決策が見えてくるはずです。これからは、自分一人でなく、部署のスタッフと共に取り組んでいきたいと考えています。

戦略思考入門

「限界突破!効率的に学ぶ秘訣」

リソースの活かし方は? 限られたリソースで最大の効果を上げるためには、やらないことを見極めることが重要です。これは、シルクドソレイユの事例からもわかるように、ROIを最大化するだけでなく、差別化にも貢献していると感じました。見極める際には、様々な視点から判断項目と基準を考えることが必要です。また、そもそもやらなくて良いことに気づかないこともあります。昔からの惰性や、常識、当たり前と思っていたことに対して、批判的に見る姿勢が求められます。人の行動や思考には慣性があるため、やめることには勇気が必要です。 仕事の仕分け方法は? 普段の仕事では、限られた勤務時間内で多くのタスクをこなす必要があります。しかし、やるべきこととやらないことを明確に仕分けていませんでした。今回の学びを活かし、自分の仕事の仕分けから始めたいと思います。 やらないものはどうする? やらなくて良いこととして、完全に仕事を止めて捨てる場合と、仕事は続けるが優先順位を下げて後でやる、完成度を下げる、もしくは他の力を借りるといった場合が考えられます。自分がやるべきこと、やらないことを仕分けた後には、やらないものに対してどのように対応するのがベストなのかも考えたいと思います。

リーダーシップ・キャリアビジョン入門

エンパワメントで広がる仕事の余裕

エンパワメントの意味は? エンパワメントという言葉を初めて知りました。自分に余裕を持つことは非常に難しいですが、日頃から意識的に余裕を保って行動しているため、今回の内容には納得できる部分がありました。一方、目標設定においては6W1Hの観点を踏まえると形式的になりがちですが、相手に合わせて柔軟に対応することが重要だと感じました。 どのように任せる? エンパワメントの実践にあたっては、まず業務を任せる前に、対象者の状況や周囲の環境について十分に把握することが大切だと考えました。その上で、どのようにエンパワメントを進めるか自分なりに計画し、メンバーにもその計画に基づいて動いてもらう形が理想です。現在の業務でも、知識や経験に差があるメンバー同士で助け合いながら進めることで、一人では難しい課題もチームとして解決し、その学びを個々に活かせるよう努めています。 目標連動のコツは? また、経営層から示される目標を部や課単位でさらに細分化すると、全員の目標が一致するとは限りません。自分は、まずメンバーの視点で目標を考え、その上で課の目標にどのように連動させるかを検討する方法を半分ほど取り入れています。皆さんの実践されている方法もぜひ伺いたいです。

マーケティング入門

学びが変える、私の未来への一歩

セグメントの選び方は? セグメンテーションでは、サービスに合わせて、人口動態、心理的、地理的、行動といった各変数の切り口から、自社商品の特性に適合したものを選定します。 ターゲットの絞り込みは? 次にターゲティングについては、評価基準となる6R―市場規模(Realistic Scale)、成長性(Rate of Growth)、競合状況(Rival)、優先順位(Rank)、到達可能性(Reach)、反応の測定性(Response)―をもとに、勝ち残る可能性が高いターゲットを絞り込むことが重要です。 ポジションマップは? また、ポジショニングでは、2軸によるポジショニングマップを策定します。この際、まず自社製品の特長を洗い出し、その上で顧客ニーズに訴求するポイントや表現、さらに競合との差別化が明確になる要素を軸として選びます。 差別化のポイントは? さらに、自社が提供するサービスは複数の競合他社と市場を争うため、市場調査や既存顧客から得られる情報を活用し、他社と差別化できるポイントを洗い出すことが求められます。展示会で抽出した要点をもとに、訪問者にわかりやすく伝えられるよう心掛けて会話を進めていきたいと考えています。

マーケティング入門

顧客の声に寄り添う学び

顧客へ魅力はどう伝える? マーケティングには多様な捉え方があり、人それぞれ認識が異なることを実感しました。私が学んだのは、マーケティングとは自社商品の魅力をきちんと相手に伝え、顧客に「自社の商品を選ぶ価値」を感じてもらうことだという点です。さらに、顧客のニーズを正確に捉え、顧客満足度を軸とした利益獲得を目指すプロセスであり、セリングとの違いについても新たに理解することができました。 IT現場の現実は? 一方、ITソリューションの開発現場では、顧客の要望や課題に取り組む中で、納期やコストの制約から必ずしも100%の顧客満足を実現できていない現実を感じます。自社にプロダクトがあるわけではないため、どのように顧客に選んでもらうかという課題は依然として大きく、顧客のニーズを的確に捉えることや自社の強みをどのように魅力として伝えるかが求められると感じました。 新規顧客獲得は? 今後は、顧客満足度の高いソリューション提案や開発案件をまず分析し、継続的に顧客からの要望があるプロジェクトで自社の強みを再確認・強化したいと思います。また、他社との差別化を明確に打ち出し、それを新規顧客の獲得につなげる取り組みを進めていきたいと考えています。

データ・アナリティクス入門

数値とABテストで見極める新戦略

数値化の効果はどう? 実践演習では、複数案を選択する際に「数値化」する手法を学びました。自分なりに言語化して記載する中で、他者に説明する際にもこの数値化が有効であると実感しました。 ABテストって何? また、動画学習ではABテストについて学びました。これまでなんとなく比較手法を採用していたものの、今後は期間や状況を意識し、差異の少ない環境で比較する重要性を再確認しました。 商品の魅力は伝え方次第? 業務面では、スーパーマーケット等へ食品を流通させる中で、商品の訴求ポイントが多数存在するため、どの情報をどのように伝えるか迷うことが多くあります。例えば、ブランドの特徴や原料産地、有機、減塩、糖質オフ、カロリーなど、様々な訴求要素がある中、限られた紙面スペースやウェブバナーでどの情報を選ぶか判断に苦慮しています。そこで、今回学んだABテストと数値化の手法を活用し、客観的に効果の高い訴求方法を選定していきたいと考えています。 評価方法はどう設定? なお、数値化にあたっては、個人の考えやバイアスが影響しやすい面もあり、できるだけ公平かつ客観的に評価できる方法やコツがあれば、今後の業務改善に役立てたいと思います。

データ・アナリティクス入門

標準偏差が拓く学びの新視点

データの全体像はどう捉える? 標準偏差を活用することで、データのばらつきを正確に把握でき、分析の全体像を掴むきっかけとなりました。平均値だけで物事を判断しないためにも、中央値など他の指標を併せて見ることの大切さを実感しています。 グラフで視覚的に理解できる? また、ヒストグラムは各グループの構成比を視覚的に捉えるのに非常に役立ちます。特に、世代などX軸の単位が明確なものの場合、グラフ化することで理解しやすくなると感じました。売上実績の分析など、データのばらつきを確認することで、より正確な施策の検討が可能になると考えています。 苦手意識は克服できる? 個人的には、以前は標準偏差に対して苦手意識がありましたが、全体のばらつきをとらえる重要な指標として積極的に活用する決意を新たにしました。さらに、ヒストグラムのように一目で内容を把握できるグラフ作成を通じて、プレゼンテーション時の相手の理解促進や、意思決定のスピード向上に貢献したいと思います。 分析の認識共有はどう進む? 今後の日々の分析においては、標準偏差やその他の代表値を取り入れ、データ全体の認識を共有することで、正確な判断に結びつけていきたいと考えています。

データ・アナリティクス入門

予測に挑む!データの秘密

予測の意義は何か? グラフを見る前に予測を立てる大切さが非常に印象に残りました。自分の予測と実際のデータとの差異を意識すると、「なぜこんなギャップがあるのだろう」という疑問が自然に湧き、分析を深堀りするうえで効果的であると感じました。予測と実績を比較するアプローチは、次にどのデータを詳しく見るべきかという方向性を明確にする上でも有用です。 平均値の限界は? 従来、総量を人数で割って1人あたりの平均値を算出し、能率を評価していましたが、詳細に見るとその平均値だけではばらつきを十分に捉えられないことが分かりました。実際に細部まで分析すると、能率には大きな差異が存在していたため、平均値だけに頼るのは疑問が残ります。そこで、中央値を算出することで、平均値では見逃しがちな偏りを補完する方法を試してみようと思います。 中央値の有効性は? また、標準偏差を用いて平均値からのばらつきを把握する手法もありますが、場合によっては中央値と比較するだけで十分な情報が得られる可能性もあります。今後は、業務の能率評価において、平均値のみならず中央値の使用意義を周知し、従来の考え方から新たな視点に変えていくことが重要だと感じています。

マーケティング入門

受講生の声が導く4P戦略

4P戦略は何が違う? 業界ごとに4P戦略の適用方法が異なることを学びました。製作業界では、Price、Place、Productの各要素は変更が難しく、Promotionのみが差別化の手段となる点に驚かされ、印象に残りました。一方、自動車業界について振り返ると、新規参入時には効果的なPromotionや顧客へのPRが重要であり、製品自体の良さがPriceの柔軟な更新につながる部分も感じられたものの、変化が限定的であるという難しさも理解できました。 演習で何が見えた? また、実践演習ではグループごとに異なる回答が示され、様々な考え方が存在することを実感しました。間接的に親が購入し子供に贈るという新たな発想は大変刺激的であり、従来の1対1だけでなく1対1対1の図式が存在することに気づかされました。 意見集めのコツは? こうした経験から、意見を集める際は多角的なアプローチが新たな気づきを生むと感じました。今後は、ニーズを引き出すためのインタビューにおいて、属性や人数などに注目し、多くの意見を取り入れるよう努めたいと思います。一人でニーズを把握することは難しいため、多くの協力を得ながら進めていく考えです。

マーケティング入門

体験が変える自分の可能性

体験価値はどう変わる? 現代では、かつて商品購入だけで得られた体験価値が、似たような体験があふれる中で差別化が難しくなっています。今は、単なる商品自体だけでなく、その商品に関連する体験(付加価値)全体が価値と見なされ、これが差別化につながると感じます。また、価格競争だけに依存すると疲弊してしまうため、どのように具体的なアクションに結びつけるか、正当な理由をもって設計していく重要性を学びました。 戦略の鍵はどこ? プロモーション展開においては、ターゲットに刺さる戦略が効果的であることを実感しました。誰に何を売るのか、そのために現状を把握し、課題解決策を明確にすることがキーだと感じました。さらに「共通の提供価値の策定」という考え方に強く共感しています。自分たちが何のために存在しているのか、どのような強みを持つのかといったことを、個人の感覚ではなく部署として共通認識を持つことが大切だと思います。部署内でパーパスの策定を行い、まずは各自で自部署の存在意義を考えることから始め、強み、弱み、課題点などの情報を整理することで、自分たちが提供する商品の価値を再確認し、今抱える課題を解決するための指針となると感じました。

クリティカルシンキング入門

問いが拓く本質解決への道

問いの立て方は? 今回の学習テーマは、私がこの講座で最も学びたかった内容そのものです。ビジネスにおいて課題を解決するためには、まず何をすべきかを明確にし、的確な施策を打つことが大切です。そのためにはまず「問い(イシュー)」を立て、その問いから目をそらさずに取り組むことが重要だと学びました。また、同僚や周囲の人とその問いを共有し、一緒に課題解決に向けて考える姿勢も必要です。 分析結果は何を示す? 私の業務では、アンケートデータやヒヤリハットデータの分析、そして事故防止策の策定を行うことが求められています。データ分析を終えた後に、「では何が課題か」「何をすべきか」を考えるフェーズに必ず差し掛かります。これまでの経験では、分析結果をもとに比較的実践しやすい案を出していましたが、本質的な解決には繋がらないプランに終始してしまっていました。 実現できる解決策は? 今回の学びを通して、まず本質的な課題解決のための問いを立てることの重要性を再認識しました。そして、その問いに対して実現可能な施策を考えるプロセスにシフトすることで、より根本的な問題解決が図れると確信しています。
AIコーチング導線バナー

「人 × 差」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right