データ・アナリティクス入門

仮説と比較で拓く学びの扉

良い比較って何? 「分析の本質は比較である」という考え方を学び、良い比較を行うためには「条件を揃える」ことや「分析の目的」に沿った比較対象を選ぶことの大切さを実感しました。 どうして視野を広げる? グループワークでは、これまで自分では思いつかなかった観点が提示され、「そんな考え方があるのか」と新たな視野を広げることができました。分析の仮説立ての際にも、さまざまな意見から多くを吸収し、視野を広げて考える重要性を再認識しました。 データは役立つ? また、売上向上の施策を検討する際には、これまで感覚に頼っていたアプローチを改め、「データ分析の目的を明確にすること」や「仮説を立て、意味のあるデータで比較すること」を実践することで、より効果的な施策へと結びつけられると感じました。たとえば、あるKPI指標を追う際、「特定の行動をしている人」と「そうでない人」とで進捗率を比較することにより、具体的な違いを把握できる点は非常に示唆に富んでいます。 学びをどう活かす? この講座で得た学びを、実際の現場でどのように活かしていくか、実践してみた結果の成功事例や失敗事例も含め、これからも共有していきたいと思います。

データ・アナリティクス入門

視野が広がる!見える化の奇跡

視野はなぜ狭く? 全回のライブ授業を通じて、自分の傾向が明確になりました。経験則の範疇で物事を考えてしまうために、視野が狭くなっていることを実感するとともに、かつて学んだ内容も十分に活かしきれていないことが分かりました。 見える化に何を感じ? 授業で取り入れられていたプロセスやビジュアル化の工夫は、自分の思考の幅を広げるヒントになりました。一旦自分の発想を見える化することで、整理もしやすくなると感じました。 戦略はどこへ向か? 業務において、データ分析から戦略策定への取り組みは欠かせないため、今回の学びを活かしながら注意点を整理し、実際に見直していきたいと思います。実績データを時系列で比較するなど、どの視点に重点を置くべきか、どこまで深堀りすべきか、その必要性を常に問い直す姿勢で取り組むことが大切だと感じました。 図解は何の助け? 今後は、初期段階からのビジュアル化を心がけ、振り返りながら適切な切り口や判断基準を繰り返し検討していきたいと思います。また、これまであまり活用してこなかったグラフ化にも意識的に取り組み、仮説も含めた考察を関係者と共有し、ディスカッションへと発展させていきたいです。

デザイン思考入門

小さな会話が未来を変える

暗黙知が示す問題は? 既存業務では、表面的には問題が見受けられなくても、暗黙知により不便さが隠れている可能性があります。そのため、ユーザーが大雑把に抱える課題を観察しつつ、定性分析を使って解決策を見出す必要があると感じています。まずは、現場をしっかり確認し、困りごとを持つ人がいないか探すことを心がけたいと思います。 仮説は有効か? また、自分自身が業務に追われ、常に周囲を見る余裕がなかったことも実感しています。そのため、あらかじめある程度の仮説を立てることが重要だと考えています。チームメンバーからは、偶然の会話の中で困っている点が見つかる場合があると聞いており、日常的にいろいろな人と話をするよう努めるつもりです。 分析手法はどう変わる? 今回の学びでは、暗黙知と定量分析の双方が大きなポイントとなりました。さらに、コーティングの手法を習得できたことで、これからはアンケートやインタビューで得た情報をコーティングする習慣を身につけたいと考えています。現在は生成AIの活用により、簡単にコーティングが可能となっているため、その点を意識しながらアンケート結果の分析にも取り組んでいきたいと思います。

データ・アナリティクス入門

実践が教える仮説検証の極意

検証手法は有効? 問題原因を明らかにし、仮説検証の手法を学びました。A/Bテストを活用して施策の比較を行い、検証条件を可能な限り統一することの重要性を実感しました。例えば、AM・PMや平日・休日といった環境の違いは、検証対象以外の要素が判断に影響を及ぼす可能性があるため、広告などではランダム表示を取り入れることで正確な評価ができると考えています。 現場実践と課題は? 業務の現場では、店舗出店など莫大な費用と時間を要するケースが多く、テスト環境の確保が難しいのが現状です。しかし、勤務状況や労務上の課題に関しては、実践の機会が得やすいため、身近な課題に対して継続的な取り組みを重ね、自身の中でフレームワークを構築していくことが重要だと思いました。 日々の計画はどう? また、仕事に限らず、収入と出費などの身近なテーマでも問題意識を持つことが大切です。まだ十分にMECEの視点で物事を分析できていないため、さまざまなケースにおける要素分析を行い、知識をストックしておく必要があると感じました。さらに、全体の時間軸を意識して日々の業務計画に落とし込むことで、突発的な対応を極力減らしていきたいと考えています。

アカウンティング入門

数字の裏に潜む物語

数字の裏に何が? オリエンタルランドの事例を通じ、事業活動からP/LやB/Sを読み解く手順を学びました。単に数字だけを見るのではなく、事業の背景にある仮説、つまり売上や売上原価、資産の構造などを意識して数字に向き合うことで、より深い理解が得られると実感しました。特に、売上原価に人件費や減価償却費が含まれる場合や、固定資産の規模と償却の進み具合が企業の状況に大きな影響を与える点が印象に残りました。こうした視点は、他社の財務分析だけでなく自社の経営状態を理解する上でも非常に有効だと感じています。 今後はどう戦略する? 今後は、業務や会議で示されるP/LやB/Sの数値に対して、背景となる事業活動や構造を必ず仮説として考える習慣を身につけたいと思います。決算資料や新聞記事を読む際にも、数字の背後にあるストーリーを意識して読み解くことで、より実践的な理解が深まると考えています。特に、減価償却や資産構成の変化は企業の長期戦略を反映するため、注意深く注視していきたいです。また、自社の予算や投資計画に関わる際には、本講座で学んだ「事業活動→数値」という流れを用いて、説得力のある提案や説明ができるよう実践していく所存です。

データ・アナリティクス入門

多様な視点で挑む問題解決術

原因と解決策は? 今週は、問題の原因分析とそこから導かれる解決策の立案方法について学びました。まず、問題の原因を明らかにする際、各プロセスに分解して考えるアプローチが有効であることを再認識しました。また、解決策を検討する際には、複数の選択肢を洗い出し、それぞれの根拠をもとに絞り込むことが重要であると理解できました。さらに、A/Bテストの手法が、A案とB案の施策を比較しながら仮説検証を行う上で非常に有用である点に注目しました。ただし、正確な比較を行うためには、両案の条件をできる限り揃える必要があることも学びました。 同時試行は効果的? 従来は、問題の原因をプロセスごとに分解して考えることは自然に行ってきましたが、複数のアイディアを同時に試すという手法は初めての体験でした。A/Bテストでは、一定のクオリティを保った施策を同時に実施するため、一時的に業務負荷が増すものの、原因をより明確に特定できるため、裏付けのある施策の実行に効果的であると感じました。たとえば、組織内で報告体制の改善を図る際、決め打ちの方法に固執するのではなく、A/Bテスト的な視点から問題を解決するアプローチにも挑戦してみたいと思いました。

データ・アナリティクス入門

仮説を飛び出せ!実践が拓く未来

学びの流れは? 実践演習を通して、What→Where→Why→Howの流れを学べた点が非常に印象的でした。実際の感想文を読むと、学んだ内容が具体的にどのように役立つかが実感でき、理解が深まったと感じました。 仮説と現実のギャップは? また、仮説の正しさに固執せず、世の中の結果を生み出す要因が複数絡んでいるという現実に納得しました。仮説を立てた段階で行動に移すことの重要性を強く感じ、その姿勢が実務でも大切だと理解できました。 複雑な要因は何故? さらに、複雑な要素が絡み合う中でWhyが必ずしも一つではないという点にも気付かされました。MECEに分類しながら仮説を立て、個々の要因を一つずつ検証していくプロセスは、仕事に応用するには手間がかかると感じました。しかし、説得力を持たせるためには、従来の仮説以外の理由を排除する作業が重要であることも学びました。 実務にどう生かす? この経験からは、仮説以外の可能性をいかに排除していくかという点が、MECE思考の力に直結していると感じました。本から得たフレームワークを活用し、実際の業務で実践することで、さらに思考力を高めていけると確信しています。

データ・アナリティクス入門

仮説の力で未来を切り拓く

仮説の役割は? 仮説とは、ある論点に対する仮の答えであり、目的に応じて「結論の仮説」と「問題解決の仮説」に分類されます。これらは、過去、現在、未来という時間軸によってその内容が変化するため、状況に応じた検討が求められます。仮説を持つことで、個々の仕事における検証能力が高まり、説得力が増すとともにビジネスのスピードや行動の精度も向上します。 会員減少の理由は? たとえば、コミュニティの会員数が減少傾向にある現象について検討する際、フレームワークに沿った分析を行うことで、何が問題なのか、どこに課題があるのか、なぜその問題が生じているのか、さらにはどのように対応すべきかといった具体的な課題が明確になり、改善策も見えてくる可能性があります。このような一連のプロセスは、非常に難しい課題ですが、正確な状況把握と議論の進展に寄与します。 活用法はどう変わる? これまで、仮説を立て検証する際に、フレームワークを十分に活用せず、目の前の事象に対して漠然と対処していた部分がありました。今後は、4Pや3Cなどのフレームワークを効果的に用い、より具体的な仮説を立て検証することが求められると感じています。

データ・アナリティクス入門

多角的な視点で挑む数字の謎解き

なぜ一案に固執しない? まず、今回最も学んだのは、あらゆる可能性を考慮し、単一の仮説に固執しない分析の大切さです。たとえ一つの数字が上下したとしても、その変動の要因を丹念に探ることが、次の一手を効果的に打つためには必要不可欠であると感じました。 どうして検証が偏った? 業務上、多くの数字を扱う中で、変化の原因を憶測だけで判断してしまっていたことに気づきました。実際、決め打ちした仮説に基づく検証に偏り、他の可能性を最初から除外していたため、十分な検証ができない場合がありました。今後は、ある要因が数字の変動に影響していると考えた際に、同じ要因が別の状況でも現れているかどうかを比較し、分析の基本である比較の原則に立ち返って検証していきたいと考えます。 なぜ多角的に議論する? さらに、仮説を立てた後すぐにデータ分析に入るのではなく、他に考えられる仮説や視点がないかあらゆる角度から検討することが重要だと再認識しました。特に、一人では気づかない視点も存在するはずなので、複数人でデータを見比べる必要性を感じています。そのため、早速4月からは、より多角的に意見を交わせる組織体制に変更できるよう動いています。

データ・アナリティクス入門

見方ひとつで変わるデータの魅力

定量と定性はどう違う? 曖昧な依頼は何が問題? 定量データと定性データは、普段何気なく扱うものですが、実際には全く異なる情報だと実感しました。データ分析を進める際、曖昧な依頼で「とりあえずざっくりで」と指示してしまうことがよくあります。しかし、授業を通じて、何を知りたいのか、何を明確にする必要があるのかをあらかじめ仮説として立て、分析を進める重要性を再認識しました。 顧客情報はどう読む? 市場の声を捉えている? また、日常的に目にする商品開発や研究での顧客情報、市場ニーズといったデータも、単に眺めるだけでは業務に活かしきれていません。これからは、得られた情報から今後の方針を明確にし、必要な開発や提案に結びつける取り組みを進めていきたいと考えています。 グラフ化は何を示す? 話し合いはどんな効果? 普段の情報をただ見るのではなく、グラフ化するなどして多角的にデータを俯瞰し、チームメンバーとのディスカッションの機会を設けることが必要だと感じました。データ分析の楽しさや、他者へ説明し理解してもらえることで生まれる信頼関係も、業務を円滑に進めるための大切な要素だと実感しています。

クリティカルシンキング入門

データ分析の新たな視点を発見!

データの見方はどうなる? データの視点やグラフの表示形式が異なるだけで、見方が大きく変わることを実感しました。データ分析を行う際、まず仮説を立て、その仮説に基づいて情報を得るための切り口を考えたいと思います。逆に、他者が行ったデータ分析の結果を見るときは、その結果やグラフをそのまま信じるのではなく、見落としていることがないかを注意深く確認することを心掛けたいです。 顧客アンケートはどう見る? 業務で顧客アンケートを分析する機会が多いため、分析時に複数の観点から試してみたいです。また、サービス改善を設計するときにも、データを根拠にした設計ができるように役立てたいです。特に定性的データ、つまり自由記述のデータをどのように分析していけばよいのか、これからさらに学んでいこうと思います。 定性と定量の使い分けは? アンケート分析に関しては、事業部での週次ミーティングで報告することが多いため、その際には複数の観点からの分析結果を提示できるようにしたいです。また、定性的データの解釈に関しては、単独で分析するのではなく、定量的データと組み合わせて客観的に分析できるように努めたいと考えています。

データ・アナリティクス入門

実践的経営戦略のスキルアップの魅力

経営戦略の立案方法を学ぶ 今回の講義では、実践的な経営戦略の立案手法について学びました。テキストや動画だけでなく、具体的な事例を交えた説明が非常に分かりやすかったです。特に、組織の強みと弱み、市場の機会と脅威を分析するSWOT分析の手法の紹介は、今後の業務に大いに役立つと感じました。 グループディスカッションの有用性 また、グループディスカッションを通じて他の受講生と意見を交換することで、新たな視点や洞察を得ることができました。このプロセスを通じて、理論だけでなく実践的なスキルも身につけることができました。 具体的なフィードバックの重要さ さらに、講師の具体的なフィードバックにより、自分自身の考え方に対する自信も深まりました。特に、自分たちが立案した戦略がどのように成功するか、仮説の立て方や検証方法に関する深い理解が得られたことは大きな収穫です。 オンライン学習の利点とは? 最後に、オンライン学習の利点として、自分のペースで学べるという点が大きいと感じました。忙しい日常の中でも、柔軟に時間を使って学習を続けることができました。これからも学びを深め、実務に活かしていきたいと思います。
AIコーチング導線バナー

「仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right