データ・アナリティクス入門

数字から広がる仮説の世界

数字加工はどう進む? 3週目では、仮説を立てるために数字をどのように加工するかを学びました。数字から意味を見出すには、まずデータを加工し、次にグラフなどでビジュアル化するという手順が重要です。具体的には、データの代表値を用いた加工や、ばらつきを感じた際には標準偏差を活用するなど、データの特性に応じた方法を選択します。これにより、グラフ化された情報から傾向をより把握しやすくなります。 手法の応用は? また、データ加工の手法が多様であることを理解した上で、毎月集計している売上や顧客層の分析にどの方法が適用できるのかを検討する意欲が湧きました。顧客層に特にばらつきが見られなくても、着目する観点によっては標準偏差を使った加工が有用である可能性があります。そのため、まずは代表値を用いてデータを整理し、グラフにしてみることが考えられます。 売上分析の疑問は? さらに、毎週抽出している売上データに目を向け、加工を通じて仮説を立てる試みも進めたいと思います。売上が高い日と低い日があるという傾向に注目し、どの代表値を活用するのが最適かを検討しながら、より具体的な仮説を構築したいと考えています。

データ・アナリティクス入門

あなたの学びも変わる仮説の魔法

仮説の全体像は? 仮説とは、ある論点に対して仮の答えを示すものであり、全体像を把握しながら考察を進めるための土台となります。ここでは、結論の仮説と問題解決の仮説という2つの視点があり、それぞれの性格や時系列に応じて中身が変わる点が特徴です。複数の仮説を立てることで、論点全体を網羅的に捉え、さまざまな角度から検討することが可能となります。 問題の原因は? 問題解決の仮説は、具体的な問題の解決を推進するための仮説です。まず、現状を整理し、解決すべき問題が何か(What)を明確にします。次に、その問題の所在(Where)がどこにあるのかを特定し、さらに原因追及(Why)によりなぜその問題が発生しているのかを分析します。最後に対策としてどのように対応すべきか(How)を検討することで、実効性のある解決策を提示できるようになります。 論点整理はどうする? 日常の業務においては、まず現状を正しく把握し、解決すべき論点を洗い出す必要があります。洗い出した各論点に対し、上記のWhat、Where、Why、Howの順に論理的に仮説を整理すると、より具体的で実践的な解決策を構築しやすくなります。

アカウンティング入門

BSで読み解く学びの現場

経営戦略はなぜ? 震災以降、ある大手テーマパーク運営企業は、現預金を潤沢に保つ経営方針へとシフトしました。同じ企業内でも、マネジメントの考え方によって貸借対照表(BS)の内容が大きく変化する点に気付かされ、2011年の教訓が10年後のコロナ禍での経営に生かされていることも非常に興味深いと感じました。また、事業活動を捉えるための枠組みが、顧客、価値、活動、資源、資金の関係を分かりやすく図解している点も印象的でした。 授業でどう実践? ライブ授業では、事業内容が容易に想像できる企業をサンプルとして選び、次期幹部候補メンバーと共に事業活動フレームワークに基づいて仮説を立て、BSを考察する場が設けられました。実際の決算書を用いて答え合わせを行う際には、今回のアカウンティングで得た学びをメンバーにフィードバックする予定です。まずは、次期幹部候補メンバーにPLやBSの基礎について講義を行いながら、事業活動フレームワークを図解で説明し理解を促しました。弊社の顧客が製造業中心であり、メンバーも製造業の事業について想像しやすいため、その中の一社を選び、売上構成やBSを考察するワークも実施しました。

データ・アナリティクス入門

平均と中央値が紡ぐ成長ストーリー

なぜルールが必要? データを取り扱う際は、一定のルールに則り全体の目線をそろえることで、伝えたい内容が明確になります。そのため、データからメッセージや仮説を引き出す際には、適切な代表値を選択することが重要です。たとえば、平均値については、単純平均や幾何平均など計算法の違いを意識し、正確な表現を心がける必要があります。 どんな手法が有効? また、データのばらつきを示すには、関数的な手法を用いてビジュアル化する方法が効果的です。舞台の単月入場率を年間の数字に換算する場合、各月の値を単純に平均するのではなく、正確な情報を伝えるために公演数で重みづけした加重平均を用いると良いでしょう。さらに、チケット単価のばらつきにより生じる外れ値の可能性を考慮し、中央値も併せて検討することが求められます。 分析に新たな示唆は? 日々の分析においては、平均値だけに頼らず中央値の視点も取り入れることで、その乖離から新たな示唆が得られるかを考えることが大切です。数字の集計表としてまとめるだけでなく、ビジュアル化によって情報の具体性と理解しやすさを高め、平均という言葉の使い方にも注意を払う必要があります。

データ・アナリティクス入門

仮説で切り拓く受講生の挑戦記

分析って何を探す? 分析とは、物事を比較しながら目的意識を明確にし、仮説を立てつつ進めるプロセスです。分析を効果的に進めるためには、「What(何を)」「Where(どこで)」「Why(なぜ)」「How(どのように)」という手順に沿うと良い成果が得られる可能性があります。 フレームをどう活かす? 特に「Why」の段階では、ケースに応じて既存のフレームワークを活用することで、より深い洞察が得られるでしょう。また、分析結果をグラフなどで見える化することにより、その説得力は一層増します。 障害の本質は何? 障害分析においては、過去の事例を参考にしながら、現時点では見えていない問題点を抽出することが重要です。これまでは既存の数字を並べるだけで手探りだった部分も、今後は「何を明らかにするか」という目的意識を持って進めたいと考えています。 データ活用はどう? まずは、障害発生件数の減少を目指すために、どのようなデータが必要かを検討し、過去の事例から現在の課題を洗い出すことから始めます。その上で、得られた情報をもとに自分なりの仮説を立て、分析作業を着実に進めていきたいと思います。

データ・アナリティクス入門

分解思考で見える未来への一歩

授業の何が良かった? ライブ授業でこれまで学んだことのおさらいができた点は、とても良かったと感じています。講義の中で、データ分析は比較が基本であること、また分析の前には明確な目的と仮説が重要であると改めて認識しました。 問題解決の視点は? さらに、問題解決には「what」「where」「why」「how」の視点が有効であると学び、特に「what」と「where」の感度を高めるために、分解の切り口を増やす活動に取り組む意欲が湧きました。 動画と集客はどう? また、動画クリエイティブの課題については、演者、媒体、長さなどの各要素に分解して問題点を特定し、数値の改善を目指す方法論が印象に残りました。同様に、集客キャンペーンの改善に関しても、何が悪かったのかを明確にすることで、次回実施への具体的な提案に繋げることの重要性を感じました。 分解は何を示す? とにかく、問題を分解して考える姿勢が大切だと実感しています。データを集めた後は、グラフなどを用いて視覚化することで理解を深め、施策実施後には常に仮説との比較を行って、正しかった点や改善すべき点を明確にしていきたいと思います。

クリティカルシンキング入門

問いで見えるチームの未来

問いをどう設定する? まず、答えを急がず、まずは問いを立てることが大切だと理解しました。自分自身だけでなく相手も偏った考えに陥りがちなため、問いを継続する際には、MECEやロジックツリーなどの手法を活用して、自分の視点が客観的かどうかチェックしています。 部署兼務の意義は? 3月から新しく立ち上げた部署との兼務となったため、まずは重要な課題(イシュー)を特定し、新しい部署が軌道に乗るよう努めたいと考えています。また、現在の部署にも課題が残っているため、チームメンバーと共にイシューの特定を進めていく予定です。みんなで話し合うことで問いを共有し、同じ目的に向かって前進できると信じています。 ビジョンどう見極め? あるべき姿を考え、まずはそのビジョンがぶれていないか、他者の意見を聞くことが重要です。現状を正確に把握し、理想とのギャップを明確に言語化することで、解決策を導き出します。解決策に早急に飛び付くのではなく、様々な切り口で問題を分解し、漏れなく重複なく検討することが求められます。最終的には、複数の仮説を立てることで、反対の視点や「NO」の仮説からも検証を進めています。

データ・アナリティクス入門

数字と仮説のドキドキ分析

どのデータが最適? 分析とは「分析は比較なり」という考えを基本に、どのデータを使い、どう加工し、何を明らかにするかを吟味する作業です。各種データに適した加工方法やグラフの見せ方が存在するため、やみくもに加工するのではなく、目的に合わせた手法を採用することが大切です。 目的と仮説は何? ビジネスデータの分析においては、データに取りかかる前に必ず「目的」と「仮説」を明確にする必要があります。プロセスは、まず具体的な仮説の設定から始まり、既存や新たなデータの収集、集計や代表値の算出、さらにはグラフを用いた加工を経て、聞き手が一目で理解できる形にまとめ上げるという流れで進められます。数字に基づくストーリーづくりが成功の鍵となります。 3C視点で何が見える? また、1つの事象を分析する際には、シンプルな課題であっても市場・競合・自社という3Cの視点を用いることで、当初は見落としていた要素が浮かび上がる可能性があります。意識的に3C分析に基づいて仮説を抽出することは、グループワークを通じて他者の視点を取り入れ、個人の思考力の限界を補いながら精度を高める効果的な手法と言えます。

データ・アナリティクス入門

問題解決の仮説でイベント成功へ挑戦

仮説の分類はどう? 仮説には、結論の仮説と問題解決の仮説という2つの重要な分類があります。結論の仮説は、ある論点に対する仮の答えを示し、一方で問題解決の仮説は、具体的な問題解決を促進するものです。これらの仮説を考えることで、私たちは「What(何が問題なのか?)」「Where(問題の所在)」「Why(原因追及)」「How(対策)」といった観点から問題を整理し、検証を進めることが可能になります。 仮説の意義を考える? 仮説の意義としては、まず検証するマインドを向上させることで説得力を高めることが挙げられます。また、関心や問題意識を高めることで、スピードアップと行動の精度向上にも寄与します。 参加者不足の原因は? 最近、学生向けイベントを開催した際に、当初の想定よりも参加者が集まらなかったという状況が発生しました。そこで、3W1Hを用いて具体的な問題解決の仮説を立て、どこに問題があったのかを明らかにしたいと考えています。今後のイベントでは、何が問題でどこに問題があるのかを具体化し、それに対する仮説を基に検証を重ねることで、より良い結果を目指したいと考えています。

データ・アナリティクス入門

データ分析で広がる新しい可能性

仮説とグラフ、どう選ぶ? ライブ授業での演習を通じて、仮説を立てることや知りたいことを明確化する手法を学びました。これは、何と何を比較するデータを集めるべきか、そしてどのグラフを用いて視覚化するかを具体的に知ることに役立ちました。それぞれのグラフには特性があり、自分が伝えたいことに適したグラフを選択できるようになったと感じています。 試験結果はどう活かす? 勤務校では、各時期に行われる実力テストの結果をもとにヒストグラムを作成し、成績の分布を視覚化したいと考えています。これにより、各得点帯の生徒数の変化を確認し、生徒の学習がどの程度定着しているかを把握することができます。また、入学後に行ったアンケート結果を分析し、入学の決め手になった要因をデータやグラフでまとめ、今後の募集活動や広報活動に活かしたいと思っています。 クラス分析をどう実施? まずは、自分の担当クラスを対象に分析を行い、具体的なデータの種類や収集方法、仮説に基づくグラフ作成など、提案方法を試行錯誤してみます。そして、その結果を関係部署に提案し、学校全体の分析へとつなげていきたいと考えています。

データ・アナリティクス入門

受講生の挑戦史!仮説の軌跡

視野はどう広げる? 仮説を立てる際には、3Cや4Pといったフレームワークを活用することで、多角的な視点から物事を捉え、広い視野で考察することができます。まずは、現状の事象を一方的に決めつけず、可能な切り口をいくつも模索することが大切です。 データはどう活かす? その上で、仮説を裏付ける目的でデータを収集し、実際の状況と照らし合わせながら検証を進めます。これにより、問題点の所在が明確になり、その原因を把握することができ、より効果的な改善策に結びつけることが可能です。 戦略はどう選ぶ? また、商品ごとの価格政策や販売戦略においては、取引先ごとに異なるアプローチが必要となる場合もあります。そのような場合、十分な根拠をもとに仮説を立て、データをもって検証することで、精度の高い意思決定を迅速に行えるようになります。 どう多角的に考える? 日々の業務では、反射的な判断や行動に流されることなく、まずは多様な観点から事象を分析し、3Cや4Pの視点を取り入れて仮説を立てることが求められます。こうしたプロセスが、より論理的かつ具体的な改善策の検討につながるでしょう。

データ・アナリティクス入門

分解して実験!柔軟思考の学び

原因はどう分析する? 原因を把握するためには、まず複数のプロセスに分解して考え、どこに問題が潜んでいるか確認することが重要です。良さそうな仮説が浮かんだら、すぐに試して実際の反応を収集し、実験や検証を通じてブラッシュアップしていくプロセスが効果的です。正しい原因を探しすぎず、迅速な行動が大切だと思います。 どこで顧客が離脱? ファネル分析は、顧客の行動を理解するのに役立つ手法です。各プロセスを細かく分解し、数値や割合を比較することで、どの段階で大きな離脱が発生しているかが明確になります。例えば、ECサイトにおいては、検索段階なのか、カート投入後なのか、決済時なのかといった具体的な離脱ポイントが把握できる点が特に有用です。 分析方法のポイントは? また、What、Where、Why、Howというステップを踏むことで、データ分析の精度が向上し、迅速な問題解決につながると実感しています。仮説を複数立てたりプロセスを細かく分解することは大切ですが、それに固執しすぎると原因分析や具体的な改善策の検討に進めなくなるため、柔軟な思考を保つことが重要だと感じました。

「仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right