データ・アナリティクス入門

多視点で挑む実験の力

A/Bテストは何が大事? A/Bテストの重要性を深く理解することができました。従来は、既存の手法でうまくいかなければ次の手法を試し、その結果を比較すればよいと考えていました。しかし、どちらか一方の仮説に固執することは、結果に対してあらかじめ決めつけるリスクにつながると実感しました。 仮説検証の新発見は? また、A/Bテストに沿った仮説検証を通して、仮説をより深く掘り下げるとともに、新たな着眼点を見つけやすいことにも気づきました。これにより、一方の仮説に偏ることなく、複数の視点から結果を検証する必要性を再認識しました。 言語化で何が整理できた? さらに、これまで問題解決に取り組む際、自然と「What、Where、Why、How」のステップで考えていたものの、言語化を通じて自分の思考が整理できたと感じます。特に、今回の学びから「Why」や「How」の視点が不足していることに気づき、A/Bテストを利用した検証プロセスを通して、データ分析を含めたより効果的な問題解決のアプローチを模索していきたいと考えました。 どう視野を広げる? 課題に取り組む中で、仮説や結果について決めつけがちな自分に気づくことができたため、今後はさまざまな観点から視野を広く持ち、仮説の立て方や分析方法を多角的に見直していく努力を続けたいと思います。

データ・アナリティクス入門

分布も味方に!データ分析の学び

平均値と分布への疑問は? 代表値を用いた分析手法が有効であると実感しました。たとえば、平均値(単純平均)を用いることで全体像を把握できる一方、データがどの程度集約されているのか、またはばらついているのかを判断することは難しいため、平均値とデータ分布の両面から検証する重要性を学びました。 データ分布の検証は? データ分布を確認する手法としては、標準偏差が挙げられます。標準偏差の値と集計結果に大差がなければ、分析の正確性が高まると感じました。また、分析内容に応じて単純平均、加重平均、幾何平均、中央値など様々な代表値を使い分けることで、異なる角度からの洞察が可能になることに気づきました。 仮説検証の進め方は? さらに、データ分析は比較を前提としているため、問いやゴールを明確に定め、仮説の設定、データ収集、仮説検証というプロセスを徹底することが大切だと学びました。これを繰り返すことで、より精度の高い結論に到達できると実感しました。 実践例の応用は? また、実践例として、交通系ICカードの決済実績を分析する際には、切り口別に代表値や分布の状況を組み合わせる手法に取り組みたいと感じました。ヒストグラムなどを用いてビジュアル化することで、報告相手にわかりやすく情報を伝える工夫が、今後の分析の質向上につながると考えています。

データ・アナリティクス入門

問題解決力を磨く3つのステップ

問題の原因をどう理解する? 問題の原因を探る際には、単純に数字に飛びつくのではなく、割合などを他の数字と条件を合わせ、その数字の本質を理解し、原因を考える必要があると学びました。 仮説の選択基準は何? また、複数の仮説のうちどれを選択すべきか簡単に判断できない場合には、判断基準を設定し、仮説ごとに評価し点数を付ける手法を学びました。その際、判断基準項目の影響度に応じて重み付けを行う必要もあることを理解しました。 新システムの導入検討はどう行う? 新しいシステムや運用の導入検討を行う際には、メリット・デメリットごとに判断基準を設け、現行と比較することで、周囲に納得感を持ってもらえる説明ができると思います。また、収支検証では、単純に数字に飛びついて結論を出すのではなく、委託されている人数や内容、イレギュラー案件の有無など、できる限り事情を細かく理解し、条件を揃えた上で検証を進めるよう意識します。 日常的な思考の癖付けの重要性 日常的に「この物事の切り口は何だろう?」と意識することで、必要なときに的確な判断基準をすぐに想定できるようになりたいと思います。そのため、日頃から思考の癖付けを行うことが重要です。また、数字を扱う際には、数字同士の条件が合っているかどうかや、数字ごとの持つ重みを意識するようにします。

データ・アナリティクス入門

学びのバランスを保ちながら進めるコツ

緻密な準備が成功を導く? 慎重になり過ぎず、頭でっかちになり過ぎないことが大切です。手を動かす前に仮説を立て、何を比較するかの指標を決める必要があります。ただし、やってみないと分からないこともあり、その際には柔軟に変更しても問題ありません。 有効な切り口を探る方法は? 引き出しの多さと選球眼が求められます。専門知識が少ない領域では、まずはフレームワークに頼るとよいでしょう。専門知識がある領域にフレームワークを掛け合わせることで、発見が生まれます。筋のよい切り口を選択するためには、現場の肌感覚としてのドメイン知識が重要です。 例えば、webサイトからの問い合わせを増やすための分析が必要な場合、データはすべて手元にあるので実践可能です。流入経路、案件種別、問合せ企業の業種、企業の所在地、案件規模、実施月、実施までの期間など、指標となり得る項目が多数あります。これらの指標を基に、問い合わせ数との相関関係を探ることで、有効な分析が可能となります。 仮説とフレームワークの活用 システムの切り替えに伴うベンダー選定や資料作成、現場からの業務要件整理とRFP作成などの業務においても、フレームワークや仮説の立て方が活用できることを実感しています。これらの方法は、実務において有用であり、実際に業務を進める上での基盤となります。

データ・アナリティクス入門

データ分析で市場予測する力が身についた

問題解決の手順とは? 問題解決の手順として、What→Where→Why→Howの流れに沿い、データを基に判断してステップを進めるフレームワークや分析手法を学びました。 特に、データを扱う際には、平均だけでなく、標準偏差や中央値など、適切な表現方法を用いることが重要であると理解しました。 ロジカルな判断を支える方法は? 3Cや4Pなど、論理的に判断するためのフレームワークも学びました。これにより、何か判断基準や切り口を持って考えたり、仮説を立てることができるようになりました。 市場分析のアプローチをどう変えた? 市場分析についても学びました。以前は既存のデータから何かを導き出そうとしましたが、今は自ら立てた仮説から始め、データを比較分析するという方法に切り替えました。 また、「豪州の顧客は〇〇を求めているため、このエリアにも需要があるだろう」という仮説を基に、市場の価格や利回りを分析したいと考えています。この仮説を例にして、Where〜Howまでの仮説検証を行い、加重平均やフレームワークの有効性を試したいです。 結果の共有と学びの深化を目指して 結果を部内に発表し、自らの考え方としてしっかりと習得することを目指しています。講座のワークや動画も見返しながら、さらに理解を深めていきたいと思っています。

データ・アナリティクス入門

仮説思考で学びを実践、諦めない心の重要性

仮説思考で成果を出すには? 仮説思考の鍛え方について体系的に学ぶことができ、非常に勉強になりました。毎回同じような学びであっても、体系的に言語化することで再現性が高まるため、自分で実践するにも他の人にアウトプットするにも非常に参考になります。 諦めない姿勢の重要性を再確認 仮説思考の鍛え方を通じて、「諦めず・熱意を持って・仮説を考え続ける」ことの重要性を改めて感じました。理解するだけではなく、それを実際に実践し、成果に結びつけることは非常に難しいです。そのため、「諦めない」ことがもっとも大切であると過去を振り返って改めて感じます。 継続的なデータ分析の意義とは? 経営データのデータ分析については、じっくりと分析する機会はあるものの、継続的には行っていません。課題は次々に発生するため、つい短絡的に結論を出してしまいがちです。これからはしっかりと時間を確保し、仮説検証を繰り返し行って問題解決の精度を高めていきたいと思います。 タスク整理と学びのルーチン化 まずは自分のタスクを改めて整理し、優先順位の低いものは権限移譲するか、削減して時間的余裕を生み出します(9月中に実施します)。また、毎週土曜日は極力「学びと実践」の時間とし、仮説検証を毎週のルーティンとして実践していきたいと考えています(今週から開始します)。

デザイン思考入門

受講生の生声から学ぶヒント

ユーザー調査で成長? ユーザーインタビューを実施している企業は、安定的に成長している傾向があることが分かりました。仮説だけに頼った商品やサービスの提供よりも、ユーザーの心に直接響く商品を作ることで、長期にわたって顧客からの支持を得られるという考えに納得しました。 実務と個人で使い分け? 一方で、ユーザーインタビューやユーザー観察の重要性は理解しているものの、実際の業務や個人としての取り組みでは十分に活用できておらず、結局はアンケート調査で済ませてしまっているのが現状です。業務面では、新人や管理職向けに人材育成の一環として、毎日困っていることやわかりづらい点を聞く仕組みがあり、そのフィードバックを改善に役立てています。しかし、個人事業主としての活動においては、ユーザーインタビューやユーザー観察を全く実施していなかったため、今回トライしてみたいと思いました。 組織の整備は進む? 組織全体としては、ユーザーインタビューやユーザー観察を体系的に行うための仕組みが十分に整っていないと感じます。個人的にはユーザーインタビューは大切だと思っていますが、これに抵抗感や苦手意識を持つメンバーがいるのも事実です。今後は、インタビュー用のフォームや質問リストを標準化することで、誰でも取り組みやすい環境を整える必要があると強く感じました。

データ・アナリティクス入門

仮説とデータで挑む本質探求

対概念をどう理解する? 「対概念」を活用し、仮説を検証する際は、まず「当社の戦略が原因である」と「戦略以外の要因が原因である」との両面から疑い、根拠を明らかにすることが求められます。 A/Bテストの注意点は? A/Bテストを実施する場合、前提条件を統一することが不可欠です。施策の要素を増やしすぎると、原因と結果の関係が不明瞭になるため、各施策は1つずつ実行するのが適切です。 仮説の再検証は? 現在は、大量のデータから分析し仮説を抽出、その結果を基に施策を検討するプロセスが行われています。しかし、原因に関する仮説設定とその再分析のフェーズが不足しているため、仮説と分析を繰り返すプロセスをより一層実施する必要があります。 比較検討の基本は? また、ABテストの前提条件は「Apple To Apple」を基本とした比較が原則です。この考え方を意識して、施策間の比較検討を行い、効果の正確な判断を下すことが重要です。 今後の分析アプローチは? 今後は、大量データからの分析と仮説抽出は現状通り行いながらも、フレームワークを活用して幅広い仮説を立案し、必要な分析を追加することで、各仮説の更なる深堀りを実施します。比較検討の際は、要素を正確に抜き出し、必ずApple To Appleの条件で検討することが大切です。

データ・アナリティクス入門

データ分析で変わる意思決定の未来

データ分析の意義とは? データ分析をビジネスに活用することの本質を理解し、考え方や手法を再設計して、自分のものにしたいと感じました。データ分析で課題を解決するとは、「勘と経験に頼る意思決定の方法を、データ分析を用いた合理的な意思決定へと改めること」を指しています。そのために必要なことを次のように整理しました。 シナリオ設計のコツは? まず、ビジネスに貢献するシナリオを描くことが重要です。そして、データを基にした意思決定プロセスを設計し、解消したい問題と解決する課題を言語化します。さらには、意思決定のプロセスを形式知として明文化することが必要です。 問題点は何か? 具体的な問題としては目標未達があり、その課題として購入増加、キャンセル回避、Webサイト離脱の回避、および集客増加といった点が挙げられます。これらの課題を「意思決定プロセス」に深く掘り下げていくことが今後の大きな課題と考えています。 今後の展望は? 今後の6週間では、問題と課題のさらなる言語化を進めていきたいと思っています。また、意思決定プロセスの6種類のうち、特にマーケティング型の「仮説試行型」と、経営者の思考バイアスを低減させるための経営者判断型について、さらに学びたいと考えています。そして、意思決定プロセスの形式知化を設計していく計画です。

データ・アナリティクス入門

知識耕しで発見!新たな仮説の扉

仮説と枠組みはどうなる? 仮説の立て方や具体的なフレームワークについての説明があり、現在取り組んでいる業務とも密接に関係していたため、大変参考になった週でした。 知識はどう耕す? 備忘の意味も含め、仮説構築のためのメモとして、まずは「知識を耕す」ことの重要性が挙げられます。なぜを繰り返し問うこと、別の観点や視点で事象を捉えること、時系列や将来予測を意識すること、そして類似や反対の事象をセットで考えることが効果的だと感じました。 創造的な仮説は? また、ラフな仮説を立てる段階では、常識にとらわれず新しい情報と組み合わせることで、発想を絶やさず創造的な仮説を生み出す姿勢が大切であると理解しました。 仮説の検証はどう? さらに、仮説の検証については、必要な検証の程度を見極め、情報収集と分析を通して仮説に具体性を加え、再構築していくプロセスが重要であると認識しました。 今後の見直しは? 現在、事業計画の策定や顧客に対するプラン作成に活かすため、仮説構築を意識して取り組んでいます。しかし、現状では仮説の立て方が自己流であり、検証も十分ではないと感じています。今後は、前述した「知識を耕す」という視点を基に、数字的根拠をうまく活用した報告や、仮説の肉付け・再構築にも注力していく必要があると実感しています。

データ・アナリティクス入門

仮説が導く学びの開花

仮説検証ってどう進める? 仮説には、結論を導くための仮説と課題解決を目指すための仮説の2種類があります。これらの仮説を検証するためには、まず誰に、どのようにデータを収集するかを明確にし、収集作業に入ることが必要です。一方的な観点に偏らず、反論を排除できる十分な異なる視点からデータを集めることで、仮説の検証はより説得力を増します。日々の業務の中で仮説を持つことにより、課題意識が向上し、目的が明確になるため、進むべき道に迷いが生じにくくなります。 大企画はどう進める? また、時間外労働の削減だけでなく、育児などで定時退勤が求められるメンバーもいるため、特に大きな企画や業務においては、仮説を立てた上でクリティカルに仕事を進める必要性を再認識しました。同時進行している別の案件の仮説に影響を受けることもありますが、データ収集と検証によってその関連性を明確にし、業務を円滑に進めていきたいと考えています。 調査票はどう作る? 現在取り組んでいるアンケート調査では、調査票設計の際に各項目についての観点や視点を検討しました。時間が限られていたため、場合分けが十分でなかった可能性もありますが、調査票は既に完成しており、明日から調査を実施する予定です。今回のアンケート調査の関連証拠として、データの特定を進めていきます。

データ・アナリティクス入門

目的意識で未来を切り拓く

学習前の心構えは? まず、学習に入る前に心構えをしっかり持つ時間が取れたことが非常に有意義でした。データ分析の授業でも触れられていた「目的地」の重要性に気づかされ、目的を定めずに学習を進めると、行き当たりばったりになってしまい、自分が本来得たい知識が得られないという現実を改めて実感しました。 分析手段の真意は? また、データ分析は単なる分析そのものが目的ではなく、目的を実現するための手段であり、その手段を用いて仮説を立てることが本質であるという点も認識できました。目的意識を明確に持って初めて、必要なデータの抽出やその後の分析が効果的に行えるのだと理解しました。 売上報告にどう活かす? この学びを、毎月作成している売上の月次レポートに活かしていきたいと考えています。売上報告では、現状の振り返りを通じて得られる情報を整理し発信しています。月ごとに売上は変動し、好調な時もあれば不調な時もあるため、どの要素に着目すべきかを明確にし、良い状態を維持するための具体的な目的を掲げる必要性を感じました。 具体的には、全体の売上維持や増加という大目標に対して、注目すべき項目を検討し、その項目に関連するデータを抽出します。そして、期間中のデータを元に仮説を立て、その仮説をチームに提示するというプロセスを実践していく予定です。

「仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right