リーダーシップ・キャリアビジョン入門

ナノ単科で見つける新リーダー像

いろんなタイプを使い分けるには? 他の研修や書籍では、あなたの性格に合わせた行動方法が提案されることが多かった印象です。しかし、今回は状況に応じて複数のタイプを使い分けるという観点が新鮮で、参考になりました。どのタイプも活用できる一方で、自分自身が明確に一つのタイプに振り切っているわけではなく、ぼんやりとそれぞれのタイプを併せ持っているように感じるため、あまり強く意識する必要はないのではないかと思いました。 リーダーシップはどう活かす? リーダーシップについて考える際のたたき台としては有用だと感じます。ただし、動画で指摘されていたように、あまり意識しすぎるとぎこちなさや違和感を与える可能性もあるため、知識として控えめに活用するのが良いかもしれません。 各タイプの違いは? また、リーダーシップには粒度の違いがあるように思います。プロジェクトや作業レベルでは「指導型」や「支援型」が効果的ですが、課や部全体のリーダーシップとなれば、長期的なビジョンを実現するために「参加型」や「達成指向型」が求められるでしょう。しかし、プレイングマネージャーとしては、どちらのアプローチが適しているのか悩む場面もあり、そのバランスを模索している状況です。 実例をどう見る? さらに、業界や時代、社員の考え方には大きな違いがあると思います。そのため、こうしたギャップやそれぞれの実践例を共有することができれば、とても有益だと感じています。

デザイン思考入門

共感で磨く顧客ヒアリング術

顧客課題整理は? 「顧客課題仮説」では、ユーザー、状況、課題、ソリューションをそれぞれ具体的に整理することで、単なるぼんやりした仮定ではなく、明確な言葉に落とし込むことができました。この手法により、経営者や従業員、支援者が共通のイメージを持ちやすくなったと感じます。 ヒアリングの進み具合は? 実際に経営者を対象に実践した際、項目ごとに整理されていることで、ヒアリングがスムーズに進み、受け入れやすい結果となりました。一方、ある飲食店の場合は、オーナーだけでなく、実情を把握している店長やホール担当へのヒアリングを次回実施することとなりました。もし項目化がなされていなかったなら、経営者の感覚だけでヒアリングが終わっていた可能性があります。 ユーザー深堀りは本当か? また、別の企業では、対象ユーザーが十分に深堀りされず、ニーズが曖昧な状況でしたが、今回の見直しを通じて、改めてユーザーの気持ちや共感を確認する機会となりました。順序は多少前後したものの、最終的にはユーザーの感情を基に課題を再検討することにしました。 共感が導く検討プロセスは? このプロセスでは、共感を出発点として課題を定義することが重視されました。基本的には決められた順序で進むのが望ましいものの、行きつ戻りつの中で課題を固めることも重要であり、仮に具体的なアクションに移していたとしても、ユーザーの共感が揺らいでいる場合は、再度立ち返って検討する必要があると感じました。

データ・アナリティクス入門

データに基づく未来予測の極意

データとは何か? データとは一般的に定量データを意味し、分析とは具体的に要素を分けて整理し、各要素の特性や構造を明確にすることを指します。分析を進める際には、比較対象や基準を設け、それらと比較することが重要です。 データ加工はどう行う? これから学ぶデータも同様に、定量データに焦点を当てます。このデータに応じて、適切な加工法やグラフの見せ方を考える必要があります。たとえば、傾向や頻度を比較する際には縦のグラフが有効で、量の大小を比較する際には横のグラフが効果的です。 分析の目的をどう設定? データ分析を始める前には、【目的】すなわち何のためにデータを分析するのかを明確にし、【仮説】としてどのような項目をどう分析するかをあらかじめ考えておく必要があります。 どんな分析を実施する? 例えば、以下のような内容についてデータ分析を行っていきたいと考えています。 - 優良顧客のデータ分析 - メンテナンス業を伴う機械の交換パーツ分析 - メールマガジン配信後の開封率、クリック測定 - 精度の高い売上予測 - リピート商品の仕組み化に向けた分析 これらの分析によって、例えば上半期の売り上げの高い上位20%の顧客データを抽出し、カテゴリー化することができます。それにより、特定の商品が売れている理由を仮説として考え、その仮説に基づいてキャンペーンメールを配信することで、受注の拡大や新たな分野への展開を図ることが可能になります。

データ・アナリティクス入門

正しい問いが導く解決の鍵

何が問題と捉える? 問題解決のプロセスには、まず「何が問題か(WHAT)」を明確にすることが基本であり、その後に課題の位置(WHERE)や発生原因(WHY)、そして具体的な対策(HOW)を検討する流れがあると学びました。 本質はどう捉える? 普段、私は問題が起こるとすぐに「どのように対応するか(HOW)」を考えてしまいがちです。しかし、本質的な解決策を導くためには、まず問題自体を正確に捉えることが重要だと実感しました。その際、基本となる「比較」を行うことで、どの部分に大きなギャップがあるかを見極めやすくなります。 経営結果の謎は? また、年次の経営結果を分析する際も、まず何が問題なのかを探ることが肝心です。例えば、利益が上がらない原因が売上の減少にあるのか、費用の増加によるものなのかを明確にし、どのカテゴリー、どの購買層、またはどの部門に起因しているのかを整理することが求められます。そして、その整理された課題に対してどのような対策を講じるかを段階的に考えていくことが大切です。 問いの作り方は? 最も難しいと感じたのは、問題そのものを見つけ出すための適切な問いを立てることです。正確な問いがあれば、フレームワークに沿って段階的に解決策を導き出すイメージが湧きます。しかし、感度の高い問いが立てられなければ、効果的なロジックツリーを作成することも困難になります。今後は、この問いを立てるコツをより一層習得していきたいと感じました。

デザイン思考入門

あなたも気づく新授業の扉

講義終了の感想は? 前期の講義終了後、学生アンケートの結果が教員にフィードバックされ、講義改善に生かされる仕組みがあることを改めて実感しました。ゼミの学生からも率直な意見が求められる中、今回の講義を通じて暗黙知の視点の大切さに気づき、複数の教員に授業見学をお願いするに至りました。 主体的授業の課題は? これまでは、学生が主体的に考える授業を目指し、講義形式をできるだけ避けるよう努めてきました。しかし、学生の受講態度や教員の講義手法を観察する中で、自分に不足している視点が多いこと、そして現場には根本的な課題やニーズが多く存在することを痛感しました。 現場で何を学ぶ? 課題の明確化のため、まずは現場に出向き、実際の行動や習慣を観察することが重要だと感じました。観察では、意識されにくいユーザーのニーズや行動の癖を捉え、インタビューではユーザーが自覚している経験や知識を言語化するという違いがあります。 定性分析の効果は? また、定性分析を進める中で、KJ法や付箋を利用した方法を取り入れ、情報の整理やグループ化を行うことの有用性を学びました。具体的には、問題の本質を捉えること、得られた洞察を整理・可視化すること、そしてユーザーの状況や課題に対する解決策の提案を通じた顧客課題説の作成がポイントとなります。 今後の改善策は? 最後に、今後も常にユーザー中心の視点を維持し、検証と改善を重ねる姿勢が必要であることを強く感じました。

データ・アナリティクス入門

データ分析をDX推進の鍵にする方法

フレームワークをどう活用する? what-where-why-howのフレームワークで考えることが非常に印象に残りました。これを会社でよく言われるPDCAサイクルに当てはめて考えてみました。P&Cの部分はwhat-where-why-howに、D&Aの部分は施策と解決策の実行に相当します。 仮説思考の真価は? 特に仮説思考はwhere→why→howの部分に適用できると思います。仮説と結論をセットで考えることで、無秩序な分析を防ぎ、限られた時間と資源で施策を考える際に有効だと感じました。 更に、単なるデータ集計とデータ分析は異なるという点についても再認識しました。 データ分析をどう実践する? 私は現在、メーカーの物流子会社で働いており、様々なシステムから日々多くのデータが蓄積されています。しかし、DXを推進すると言いつつも事なかれ主義が根強く、なかなか進展しないのが現状です。今回学んだwhat-where-why-howの流れでデータを分析し、グラフ化して社内で共有することで、的を絞った改善策の検討に役立てることができると思います。 目標達成に向けた分析とは? 具体的には、何を達成したいのかを明確にし、日々蓄積されるデータから目的に合ったデータを選定して分析し、情報として活用します。その結果を「わかりやすく伝える」ことを念頭に置き、周囲に共有して活動に巻き込み、活動の方向性を決める役割を担いたいと考えています。

データ・アナリティクス入門

問題解決の鍵:ギャップを見極めるポイント

問題解決の基本ステップをどう活用する? 問題解決について、「What・Where・Why・How」の段階があることを学びました。これらの段階は場合によっては行き来しながら課題の特定を進めるために用いられます。 定量的なギャップ分析を習慣化すべき? 問題解決において、定量的なギャップを要素分解し、影響度の高い変数を特定する手法は、どのような案件にも通じるため、ぜひ習慣化していきたいと感じました。また、MECE(Mutually Exclusive, Collectively Exhaustive)に分解するためのフレームワークについても、既存のものを学ぶ必要があると考えています。 部門間の合意形成はどう進める? 様々な部門の相談案件に対応する際には、まずどこにギャップがあるのかを明確にし、相手の合意を得たうえで進めることが重要です。そして、目の前の依頼内容の解決にとどまらず、その依頼が本質的な事業課題を要素分解した際にどれほどの影響度を持つのかを冷静に判断し、本当に解くべき課題の探索にも応用することが必要です。 「What」から考え始める理由とは? 現状対応中の案件や新規案件に取り組む際には、「How」から入らず、まず立ち止まって「What」からステップを踏んで考えることが求められます。また、あるべき姿と現状とのギャップについては、依頼元としっかりとすり合わせ、共通認識のもとで仕事を進めることが大切だと感じました。

アカウンティング入門

数字で読み解く成長の軌跡

提供価値は何? Week2に引き続き、提供価値とコンセプトに基づいて考える重要性を改めて実感しました。PLを確認する際は、売上高、営業利益、経常利益、当期純利益といった大きな数字で全体像を把握し、比較や対比を通じて傾向の変化や違いを見極めることが大切だと学びました。 経常利益の意味は? また、これまでは当期純利益に注目していましたが、投資家の視点では毎年の稼ぐ力を示す経常利益に注目するケースが多いと知り、新しい視点を得ることができました。さらに、BSで企業の体力を見るだけでなく、通常の収益と費用が分かる経常利益を通じて、継続して稼ぐ力があるかどうかを判断することの意義を感じました。 企画収益はどうなる? 新規事業や企画の立案時には、まずその企画の提供価値を明確にし、コンセプトに基づいてどのように収益を上げるか、売上高や営業利益、経常利益がどのように変動するかを論理的に考える習慣を身につけたいと思います。当期純利益に固執せず、売上高、営業利益、経常利益のバランスが競合他社と大きく乖離していないかどうかも、検証の観点に加えていきます。 異業種のPLは何を示す? そのため、提供価値とコンセプトに立ち返る思考法を定着させるために、同業種だけでなく異業種のPLを定期的にチェックする習慣をつけたいと考えています。今回のカフェ事例のように、身近でイメージしやすい業界のPLから分析を始めることで、理解を深めていこうと思います。

マーケティング入門

事例で魅せる!狙い撃ちの価値創造

提供価値はどう見える? マーケティングの基礎として、誰にどんな価値を提供するのか、そしてどのように魅せるのかを事例を通してしっかりと振り返ることができました。 反応をどう捉える? 実際に商品を発売した後、狙ったターゲット層とは異なる層に受け入れられたケースや、商品の内容を変更せずに名前を変えただけで売上が伸びた事例、またユーザーの口コミから商品の予想外の魅力が伝わったケースなど、様々な現象を目の当たりにしました。こうした事例を通じて、発売後も「顧客はどう反応しているのか?その背景は何か?」といった視点で、Who、What、Howを見直す重要性を再認識しました。 ターゲットは誰? すべての顧客に満足してもらおうとするのではなく、「誰に」焦点を絞ってターゲット層を考えることで、より刺さる価値を創造できると感じました。時間やマンパワー、コストなどの資源が限られている中で、「売上を上げる」というゴールに対して、どのターゲットにどのような価値を提供するのが最も効果的かを考えることが大切だと思います。 戦略の優先順位は? 顧客層をセグメント化し、優先順位の高いターゲットを明確に定めることで、ターゲット層のニーズやインサイトを深掘りできました。その後、メンバーと共にアイデア出しを行い、具体的な施策を検討し実行するプロセスは、セールスやカスタマーサクセス、マーケティングなどさまざまな分野で応用できると実感しました。

クリティカルシンキング入門

クリティカルシンキング再発見の旅

なぜ記憶が戻らない? ライブ授業を通じてこれまでの学びを振り返る中で、最初の授業で学んだ内容を思い出すのに苦労しました。これは、学んだことを十分に反復練習していないことの証拠でした。しかし、他の受講生の意見を聞くことで徐々に思い出すことができ、振り返りの良い機会となりました。また、クリティカルシンキングとは問いに対して客観的な視点で考え抜き、主張と根拠を導くことだと再確認しました。 なぜ問いを重視する? 自分自身が特に重要だと感じた点は次の三点です。一つ目は、イシューを問いの形にすること。二つ目は、問いを共有すること。そして三つ目は、問いを常に考え続け、それを残しておくことです。 顧客課題はどう見抜く? 顧客の課題を考える際には、自社製品が提供する価値は何かを深く考える必要があります。顧客の課題の本質を見抜くために、「本当にそうか?他に考えられる点はないか?」と考え抜くことで、提供価値を明確にすることが求められます。また、複数人で議論する際には、イシューを明確にし、目的を見失わないようにすることが重要です。 どう実行するのが良い? 具体的には、ミーティングの初めにイシューを全員で確認し、議事録に記載することが効果的です。また、議論の途中で立ち止まり、第三者の目線で冷静に自分の思考をチェックする時間を設けることも大切です。そして、一度結論が出たとしてもそこで終わりにせず、「本当にそうか?」を繰り返し考えることが重要です。

データ・アナリティクス入門

数字に隠れた学びのヒント

全体の流れは? データの分析にあたっては、「what」「where」「why」「how」を意識し、細部に目を向けながら全体の流れを把握することが大切だと感じました。平均値を確認する際にはばらつきも捉え、代表値を選ぶときには元データの傾向を十分に理解することが、全体像(森)を見渡す鍵になると実感しました。 仮説検証の進め方は? また、データから得られた示唆をもとに、さらに分解して仮説検証を進めるプロセスが重要であると感じています。単に数字を追うのではなく、その裏にある人々の行動や意図をイメージすることで、より深い理解へとつながると気づかされました。 アンケート設計はどう? 加えて、アンケート設計において「どちらでもない」を選ばせない工夫が、回答者の意見をより明確に捉えるために有効であるという点も良い気づきでした。こうした取り組みは、得られる情報の質を高め、後の分析においても大いに役立つと思います。 EC分析の鍵は? さらに、ECにおける顧客、商品、売上といった各視点のデータ分析に、この学びを応用していきたいと感じています。実習課題では前年との比較を行い、特定の商品カテゴリでの売上低下など、数多くの視点から分析する方法を学びました。昨年と今年の売上推移、売れ筋商品のトレンド、併せ買いの傾向、そして商品における顧客属性の違いなどを比較することで、売上が低下した場合のリカバリー対策の策定にも役立つ視点を得ることができました。

データ・アナリティクス入門

仮説で切り拓く学びの軌跡

仮説の基本的な意味は? 仮説とは、ある論点に対する一時的な答えを意味します。仮説を立てることで、説得力が向上したり、日々の課題に対する意識が高まったり、業務のスピードアップにもつながります。仮説には、結論に向けたものと、問題解決のための「どこで」「なぜ」「どうやって」といったステップに基づくものがあります。また、時間の経過により仮説の内容が変化することも考えられます。 仮説検証はどう進む? 仮説を構築する際には、まず複数の仮説を立て、各仮説が網羅的であるかを確認することが重要です。思いつきや直感、単一の数字だけで決めつけず、様々な切り口やフレームワーク(たとえば4Pなど)を用いて検証することが求められます。さらに、必要なデータが何か、どこにあるかを探りながら、証明可能なデータやアンケート、インタビューなどを通じて仮説を補強することも一つの手段です。 過去経験はどう活かす? これまでの経験や目の前の数値だけに頼る傾向がありましたが、初めに様々な可能性を洗い出しておくことで、全体のスピードアップや説得力が大幅に向上することを実感しました。また、3Cや4Pといったフレームワークは、実際の業務でどのような視点で分析を進めるべきかを検討する上で有効であると理解できました。調査依頼を受けた際には、目的に応じた適切な指標を考え、複数の仮説を立てることで、分析の軸を明確にし、必要なデータの所在を把握していくことが大切だと感じています。

「明確」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right