クリティカルシンキング入門

伝わる!ピラミッドの極意

伝え方はどう変わる? ピラミッドストラクチャーの考え方を学び、何をどう伝えるべきか、メインメッセージとその理由、根拠を明確にする重要性を実感しました。自分の伝えたいことを一方的に表現するのではなく、相手にきちんと伝わる方法を心掛けることが大切だと感じています。 業務効率は向上? この考え方は、上司への提案や相談、部下への指示出しなど、日々の業務において活用できると思います。相手に求めることやその背景、理由を論理的に伝えることで、業務の効率化にもつながると考えています。 スキルは伸びる? 今後は、提案や指示を行う前にピラミッドストラクチャーの手法を活用し、伝えたい内容が明確かつ論理的に整理されているかどうかを意識していきたいです。そうすることで、伝え方と考え方のスキルの向上を目指していきます。

クリティカルシンキング入門

3つの視点で磨く説明力

どうして視点を変えるの? WEEK1で掲げた「片手落ちでない説明をしたい」という目標について、具体的には「視点を変えて分析ができるようになりたい」という意図が明確になりました。そのために、「3つの視」や定量情報を分解するツールを学び、実際の業務においてもその考え方を実践していく所存です。 どう伝えれば納得できる? 私は、コーポレート部門に所属しており、社内規程や組織設計に関する提案を行うことが多いです。組織設計の変更を提案する際には、経営層、管理職、スタッフという3者のステークホルダーに共通するイシューを抽出し、わかりやすく説明する必要があります。今後は、どのようにイシューを立て、3つのレイヤーに対して効果的に伝えていくかを、視点を変えた分析や振り返りの習慣を通じて磨いていきたいと考えています。

データ・アナリティクス入門

データ分析をもっと身近に感じよう

比較分析の考え方とは? 分析とは比較であるという考え方には改めて納得しました。特にビジネスの現場では、目的に応じて分析のアウトプットが変わるため、前提条件の確認を怠らないよう心がけたいと思います。 データ分析の意識法は? 日常業務でデータに触れる機会が多いですが、まずは仮説や問いを立て、目的に沿った分析を意識したいです。データ分析自体を目的とせず、次の提案につながるアウトプットを目指します。 仮説を立てる重要性について 正しい仮説や問いを立てるためには、現状把握や周りとの意見交換を徹底し、怠らないようにします。ビジネスのゴールから逆算してデータ分析を行い、常に目的を忘れないようにします。また、データの整理や可視化についても学び、分析の全体的な流れをスムーズに進められるようにしていきたいです。

クリティカルシンキング入門

振り返りから見える成長の瞬間

自分で手を動かす意義は? 与えられたデータをただ眺めるだけでなく、必ず自分自身で手を動かし、さまざまな観点から検討することが大切です。一つの切り口だけでは見落としがあったり誤った結論に至る可能性があるため、複数の視点をもって仮説を立て、検証する必要があります。まずは、全体をどのように定義するかを明確にしてから、データの分け方を考えてみてください。そして、その考え方が本当に正しいのか疑う姿勢も忘れずに持つようにしましょう。 データが提案の鍵か? 通常の業務でデータを扱う機会があまりない場合には、まずクライアントとの会話の中で参照できるデータについて触れてみると良いでしょう。提案の際、市場や現状の理解を示すためにも、データを活用しながら仮説をもとにさまざまな切り口で検証していくことが求められます。

クリティカルシンキング入門

ピラミッドストラクチャーで説得力UP!

ピラミッドストラクチャーの学びとは? ピラミッドストラクチャーの重要性を学びました。特に、主語と述語を明確にする訓練が理解の助けになりました。また、歓送迎会の日程変更の提案についての分かりやすい事例も非常に役立ちました。 事務職員への説明をどう改善? 予算を確保するために事務職員に説明する際、これまで簡潔かつ論理的に伝えることを考えたことがありませんでした。私は思いついた順に説明していただけでした。 結論を最初にする理由は? 結論を最初に述べ、その理由を3つ程度優先順位をつけて準備することが重要です。事例を通して学んだことですが、単純でわかりやすいテーマやコミュニケーションであっても、業務においてはピラミッドストラクチャーが非常に役立つアプローチであることがわかりました。

データ・アナリティクス入門

自ら選ぶデータ分析の真髄

データ分析から何が学べる? データ分析を通じて、体系的な課題解決方法を学びました。実際に扱うデータは自ら補完する必要があるため、比較意識を持って必要な情報を選定するスキルを高めたいと考えています。 応用力はどこから来る? また、業務全般に応用可能なフレームワークや思考パターンを習得できたと感じています。単一の業務でなく、思考が求められる多くの場面で今回の学びを実践し、常に意識を持って取り組んでいきたいと思います。 課題対策は具体的に? 違和感や課題に直面した際は、確認を含む仮説の立案やプロセスの細分化を意識して行いたいです。分析フェーズでは、比較を通じて実証を目的としたデータ抽出や多角的な視点からの提案を心掛け、より具体的な検証ができるようになりたいと考えています。

クリティカルシンキング入門

根本原因に気づく学びの瞬間

なぜ根本原因を追究する? 今週のクリティカルシンキングの講座では、問題解決において表面的な対策ではなく、なぜ問題が発生しているのかという根本原因に注目する重要性を学びました。単に一時的な解決策に飛びつくのではなく、問題の背景をしっかりと分析し、再発防止につながる本質的な対策を考える必要性を実感しました。 どうして改善が必要なの? また、人事や労務の実務においても、たとえば「残業が多い」「有休が消化されない」といった相談に対して、単に働き方の調整を促すだけでなく、部署別や業務内容、従業員の属性などさまざまな要素を細かく見直すことが求められます。それぞれの要素を分解して根本原因に基づく改善策を提案することで、より効果的で持続可能な職場環境の改善が実現できると感じました。

クリティカルシンキング入門

ロジックツリーで見える説得力

根拠の使い分けは? 根拠を使い分けるという発想はこれまで無かったため、提案を行う際に必ず課題の形成、その原因、解決策という流れで考えてきた自分にとって大変新鮮な学びとなりました。 ロジックツリーの効果は? また、資料作成や他部署への提案において、前提知識のある相手なら多少省略しても伝わるものの、実際の業務ではそのような場面は少なく、ロジックツリーを用いることで相手に明確に伝わる文章を作成する必要性を強く感じました。 説得力向上はどう? さらに、報告や資料作成において結論だけではなく、根拠が明確でないために論理が飛躍し説得力に欠ける場合が多かったことから、ロジックツリーを活用して、説得力のある提案ができるよう努めていく所存です。

クリティカルシンキング入門

データが語る学びのワクワク発見

どう切り口を見極める? 数字の分析において、与えられた情報をそのまま受け取るのではなく、細かく分解し、どの切り口が有効であるかを見極める重要性を再認識しました。複数の視点でデータを分解すると、異なる結果が導かれることが印象に残っており、分析の際にはMECE(漏れなく、重複なく)を意識することが大切だと感じました。 実務はどう評価する? 実際の業務では、データ分析を行う機会は少ないものの、マーケターの提案内容を確認する際には、情報を細分化し、複数の切り口で評価する手法を取り入れています。また、トラブル対応においても、確認すべき事項がMECEになっているかを念頭に置きながら進めることで、より確実な対策を講じることができると考えています。

戦略思考入門

戦略思考の土台を築く挑戦

戦略ツールで何を学ぶ? SWOT分析、3C分析、PESTなどのフレームワークを学んだことで、内外の環境を捉える視点が広がり、戦略の土台構築について理解が深まりました。どのようなツールが戦略策定に役立つのか、具体的なイメージを持つことができました。 技術戦略の意義は何? さらに、担当領域における技術戦略の基盤作りにこれらのフレームワークが有用であると感じ、どのような課題やチャンスが存在するのか、改めて考えるきっかけとなりました。 実践の展望はどう? 今後は、実際に3C分析、SWOT、PESTを活用し、業務改善や具体的なシナリオの構築に挑戦することで、技術開発提案書作成の背景となる土台づくりを進めていきたいと考えています。

戦略思考入門

ROIの数字で実務を再考する

数字評価の意味は? ROIを数字で評価することで、状況が非常に理解しやすくなったと感じます。特に、技術戦略提案書などの背景構築にどのように反映できるか、実務で検討してみたいと思います。 投資対効果ってどう? 一方、ROI「投資対効果」だけで優先を決めるのは、必ずしも最適とは言えないという疑問も残りました。自身の業務については、これまで投資対効果を意識したことがなかったため、改めて工数実績から計算し、優先順位を見直す必要があると考えています。 捨てる選択はどう? また、ROIは捨てる選択を判断する際には有用だと感じた一方で、ROIのみで優先すべき項目を決めた場合に上手くいくかどうかには、やはり懸念が残りました。

データ・アナリティクス入門

数学感覚と実践が生む提案力

数学の感覚はどう? 今週の学習では、数学の問題に取り組むような感覚で、データを加工し、原因を定量的に特定する手法について学びました。すでにWebマーケティング戦略の一環として学習済みのAB分析に関しては、今回は新たな発見はありませんでした。 実践で効果はどう? 実際の業務においても、今回の実践演習のようなわかりやすいデータが存在すると、分析が楽しくなると同時に、説得力のある提案につながると感じました。これを機に、より具体的で定量的なデータの収集を心がけたいと思います。 動画学習の意図はどう? また、動画学習の内容は、データ分析というよりもマーケティング戦略に重点が置かれていると実感しました。
AIコーチング導線バナー

「業務 × 提案」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right