データ・アナリティクス入門

実践で磨く!データ活用のヒント

学びはどんな感じ? これまでの学習を通じて、データ分析の基礎から実践的な活用方法まで、一連の流れを体系的に学ぶことができました。単なるデータ処理にとどまらず、どのように課題を設定し、仮説を立て、検証するかという思考プロセスの重要性を改めて実感しました。 重要な点は何? 学習内容を振り返る中で、自分にとって重要なポイントを再確認することができました。今後は、業務の提案文書作成時に、分析を活用して根拠を明確に示す取り組みを進めたいと考えています。また、日頃から目にするデータがどのように役立つかを意識する習慣を身に付けたいと思います。 次への一歩は? さらに、知識の定着を図るため、学習を終わらせずに統計検定の取得を目指すとともに、業務での分析においては各種フレームワークを適用し、実践で活かしていきます。具体的には、営業店の業務負荷の要因分析を実施し、仮説を立ててデータに基づく検証を行いたいと考えています。

データ・アナリティクス入門

分析の核心に迫る!比較活用の極意

比較の意義は? 分析の核心は、比較にあります。比較を行う際には、対象の選定や条件を統一することが、意義深い分析につながります。また、分析の出発点として、目的や仮説の定義が欠かせません。これらは、できるだけ明文化しておくことが理想的です。 データの見せ方は? さらに、分析結果を伝えるには、グラフやパーセンテージなどで適切にビジュアライズすることが重要です。例えば、自社サービスと競合他社サービスの比較では、自社に有利な形でデータを提示するのが一般的です。また、サービス導入前後の状態を比較し、業務時間の短縮やコスト削減といった導入効果を、定量的に示すことが求められます。 リスクをどう定量? ある程度の定量化を行った提案は既に実施していますが、定量化が難しいと感じられるセキュリティリスクやコンプライアンスリスクの削減についても、納得感のある定量的データとして提示する工夫をさらに進めたいと考えています。

マーケティング入門

ライブ授業で発見!顧客視点の新常識

どうして顧客視点? 顧客視点の重要性について、改めて学ぶことができました。特にライブ授業内での「完全メシ」の話では、ターゲットとそのニーズを具体的に考える実践を通して、世の中の商品がいかに顧客視点を大切にして提供されているかを実感しました。 業務設計はどう? また、顧客視点に立った業務設計の必要性も強く感じました。現状、異なる視点を持つ顧客との関わりが多いため、「何が望まれているのか?」という視点を重視し、セリングではなくマーケティングのアプローチを取り入れることで、双方にとってWINとなる提供方法が実現できると考えています。 意見整理はなぜ? さらに、自身の考えを文字に起こすことの意義を再認識しました。提案やディスカッションの際、漠然と意見を述べると情報の整理が不十分になり、主観に偏る危険性があります。今後は、考えをしっかりと書き出して客観的に整理整頓することを意識していきたいと思います。

クリティカルシンキング入門

イシュー共有で本質に迫る

イシューの意味は? 「イシュー」とは「いまここで答えを出すべき問い」であり、その重要性を実感しました。問いが誤ると論点がずれ、共通認識が形成されなくなるため、イシューを共有し本質を意識することが、具体的な課題解決や施策につながると考えています。 課題共有はどう進む? IT業界においては、顧客からの課題相談が頻繁に寄せられるため、まずはイシューを明確にして共有することから取り組みたいと思います。共有をせずに解決策だけを模索すると、後に認識の齟齬が生じ、根本的な課題解決につながらない恐れがあります。 本質解決は可能か? 業務では、本質的な課題が誤ると顧客が期待する解決が果たせず、結果として不適切なITシステムが提供される恐れがあります。そのため、単に解決策のみを提案するのではなく、イシューを踏まえた本質的な課題解決を追求することで、真に必要なITシステムの提供が可能になると考えています。

クリティカルシンキング入門

MECEで解決!分解のススメ

分解で何が見える? 分解によって状況の解像度が上がることを学びました。データの加工や分け方の工夫、分解時の注意点を押さえることで、問題点の把握が可能になると思いました。特に、MECEを前提に「モレなく、ダブりなく」を意識しながら切り口を考えることで、問題をより具体化できると感じました。 業務でどう活かす? 自分の業務では、プロジェクトの会議や提案資料の作成において、この分解の基礎を活用しています。MECEを意識し、「モレなく、ダブりなく」という観点を持ちながら、最も適切な切り口を考え、全体を定義することで、状況の解像度を向上させたいと思います。 実践はどこから始まる? まずは実践として手を動かし、分解に挑戦したいです。MECEの「モレなく、ダブりなく」を意識し、層別、変数、プロセスのどれが最適かを考えることで、抽象化されていた問題点を具体化し、解像度を高めていきたいと思います。

デザイン思考入門

試しながら感じた生成AIの可能性

業務活用はどう進む? 生成AIを業務に活用する動きが進む中、まずは自分の業務で試してみることが大切だと感じています。たとえば、直近ではOpenAIの新しいモデルに関して、ハルシネーション率が高いとされるため、o4-miniを使ってその数値を表にまとめる取り組みを行いました。 混在は何故起こる? しかし、OpenAIのモデルであるにもかかわらず、GPT-4o-miniとo4-miniが混在した表が作成され、そのままでは利用できない結果となりました。ベンチマークでは高いスコアが出ているものの、正確性の面では改善の余地があると実感しました。 試行の価値は? また、生成AIは手軽に試すことができるため、積極的に利用する価値があると感じています。さらに、AIエージェントやGraph RAGといった技術も提案されており、これらを自分自身で実践することが重要だと改めて認識しました。

クリティカルシンキング入門

業務に生かす学びの再発見

業務にどう活かす? 学んだ内容を自身の業務にどう生かすか、真剣に考えるための良い機会となりました。今回の復習を通じて、常に自分自身に問いを投げかけ、この方法や考え方が正しいのかを自問自答する癖を身につけたいと考えています。 提案はどう見直す? また、提案にあたっては、提供価値が適切に整理され、相手の立場からもベストな提案や回答になっているかを意識するよう努めたいと思います。知識はあるものの、業務に落とし込みきれていない同僚も多い中で、私自身が第三者の視点から客観的な指摘を行う役割を担うことも大切だと感じました。 習得はなぜ重要? 総復習の機会を通じ、日常的に学んだことをしっかりと身につけることが重要であると再認識しました。自分なりのフレームワークを確立し、それを業務に定着させる習慣をつけることで、さらなる成長を目指していきたいと思います。

デザイン思考入門

生成AIとデザイン思考で切り開く挑戦

生成AIの使い方は? 生成AIを効果的に使いこなしている皆さんの姿に驚きました。また、提案されたアイデアが多角的な視点から考えられており、誰も同じコンセプトで作成していなかった点が印象的でした。自分もどの部分でユニークな回答を生み出せたのかを見直し、今後の取り組みに活かしていきたいと考えています。 課題解決の流れは? デザイン思考入門で学んだ共感、課題定義、発送、試作の手法を総務業務の改善活動に積極的に取り入れていきます。まずは、様々なイベントに積極的に顔を出して情報を収集し、皆さんが抱える問題点を洗い出します。その中で特に意見が多かった項目をもとに課題定義を行い、場合によっては実際の現場の声を反映したペルソナ作成も検討しますが、生成AIを活用することで自分では捉えきれない視点も網羅できるため、その力も借りながら進めていくつもりです。

データ・アナリティクス入門

データ分析をもっと身近に感じよう

比較分析の考え方とは? 分析とは比較であるという考え方には改めて納得しました。特にビジネスの現場では、目的に応じて分析のアウトプットが変わるため、前提条件の確認を怠らないよう心がけたいと思います。 データ分析の意識法は? 日常業務でデータに触れる機会が多いですが、まずは仮説や問いを立て、目的に沿った分析を意識したいです。データ分析自体を目的とせず、次の提案につながるアウトプットを目指します。 仮説を立てる重要性について 正しい仮説や問いを立てるためには、現状把握や周りとの意見交換を徹底し、怠らないようにします。ビジネスのゴールから逆算してデータ分析を行い、常に目的を忘れないようにします。また、データの整理や可視化についても学び、分析の全体的な流れをスムーズに進められるようにしていきたいです。

クリティカルシンキング入門

ピラミッドストラクチャーで説得力UP!

ピラミッドストラクチャーの学びとは? ピラミッドストラクチャーの重要性を学びました。特に、主語と述語を明確にする訓練が理解の助けになりました。また、歓送迎会の日程変更の提案についての分かりやすい事例も非常に役立ちました。 事務職員への説明をどう改善? 予算を確保するために事務職員に説明する際、これまで簡潔かつ論理的に伝えることを考えたことがありませんでした。私は思いついた順に説明していただけでした。 結論を最初にする理由は? 結論を最初に述べ、その理由を3つ程度優先順位をつけて準備することが重要です。事例を通して学んだことですが、単純でわかりやすいテーマやコミュニケーションであっても、業務においてはピラミッドストラクチャーが非常に役立つアプローチであることがわかりました。

データ・アナリティクス入門

自ら選ぶデータ分析の真髄

データ分析から何が学べる? データ分析を通じて、体系的な課題解決方法を学びました。実際に扱うデータは自ら補完する必要があるため、比較意識を持って必要な情報を選定するスキルを高めたいと考えています。 応用力はどこから来る? また、業務全般に応用可能なフレームワークや思考パターンを習得できたと感じています。単一の業務でなく、思考が求められる多くの場面で今回の学びを実践し、常に意識を持って取り組んでいきたいと思います。 課題対策は具体的に? 違和感や課題に直面した際は、確認を含む仮説の立案やプロセスの細分化を意識して行いたいです。分析フェーズでは、比較を通じて実証を目的としたデータ抽出や多角的な視点からの提案を心掛け、より具体的な検証ができるようになりたいと考えています。

クリティカルシンキング入門

ロジックツリーで見える説得力

根拠の使い分けは? 根拠を使い分けるという発想はこれまで無かったため、提案を行う際に必ず課題の形成、その原因、解決策という流れで考えてきた自分にとって大変新鮮な学びとなりました。 ロジックツリーの効果は? また、資料作成や他部署への提案において、前提知識のある相手なら多少省略しても伝わるものの、実際の業務ではそのような場面は少なく、ロジックツリーを用いることで相手に明確に伝わる文章を作成する必要性を強く感じました。 説得力向上はどう? さらに、報告や資料作成において結論だけではなく、根拠が明確でないために論理が飛躍し説得力に欠ける場合が多かったことから、ロジックツリーを活用して、説得力のある提案ができるよう努めていく所存です。

「業務 × 提案」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right