データ・アナリティクス入門

データ分析の本質を再発見!

分析と整理の違いは何か? 「分析」、「収集」、「整理」はそれぞれ異なる作業です。データ整理で分析が終わることもしばしばあり、比較対象があいまいになることもあります。また、見せ方に時間をかけすぎると、「相手に伝えたい」という本来の目的が不明瞭になることが多々あります。これは、「分析とは比較である」ことや「目的に立ち返ること」がしばしば抜け落ちがちだからではないでしょうか。楽な方に流れる思考や、目に見える分かりやすいものに飛びつきやすいバイアスに引っ張られる癖があります。自分の特徴を含めてこれらをしっかり俯瞰して整理しておかないと、学びの方向性やその捉え方がずれてしまう可能性もあると感じました。 常に数値を更新する重要性 販売状況や市況状況、社内状況の分析を進める中で、過去の基準や初期値がたびたび変更されてきました。分析が比較である以上、常に更新された数値のみが注目されることが多いです。このような状況では正確な分析ができず、意思決定に繋がらないと感じています。これはとても危険なことかもしれません。 データ整理はなぜ重要か? 様々な分野で目的とされることを視野に入れ、使用されるデータの洗い出しを行います。比較するためにも整理が必要ですので、いつでもデータを抽出できるよう、整理を行うことが重要です。整理された状態から、それぞれの目的に合わせた比較基準を設計することが求められます。

戦略思考入門

ビジネス成功の鍵は現状把握とフレームワーク活用

他社との差別化に課題はある? 事業会社に携わっていた際、他社との差別化について意識していましたが、それがかなり主観的だったかもしれないと反省しています。「こうしたい」という思いと、実現可能なことや顧客から求められているもののギャップを埋めなければ、ビジネスとして成り立ちません。 フレームワークの活用で何が変わる? 各種のフレームワークは客観的な判断に有用ですが、顧客の設定(もしくは創造)がすべての軸となることが深く理解できました。3C、SWOT、バリューチェーン、VRIO分析を用いて、現実的かつ需要に適い、持続可能な差別化を打ち出すことに役立てていきたいと思います。 中古車販売で差別化するには? 中古車販売事業は競合も多く、とてもありふれた商売ですが、ポーターの3つの基本戦略が非常にわかりやすく当てはめられます。他社との比較が容易にでき、自社の差別化戦略に繋げられそうです。 フレームワークをどう実践する? 学んだフレームワークはとにかく使ってみなければスキルとして定着しないし、良し悪しの判断もできません。フレームワーク自体に良し悪しがあるわけではないでしょうが、合う合わないの問題はあるかと思います。 現状把握で安全なスタートを! どの方向へ向かうにしても、現在位置を正確に把握することで安全確実な一歩を踏み出せると考えます。まずは冷静な現状把握が必要です。

データ・アナリティクス入門

データ分析で見つける新たな学びの価値

代表値の意義って? 代表値は、大量のデータを分析して大まかな実態を把握する際に重要です。特に、単純平均を用いるときには標準偏差も算出し、データのばらつきを確認することで、異常なデータを見つけることができます。グラフを比較・解釈し、仮説を立てることで、次の分析段階の方向性が明確になるのもポイントです。また、幾何平均は成長率や変化率の平均を求める際に用いることが適しています。 ターゲットをどう掴む? 競合や生活者ニーズを把握するため、製品購入者の年収や性別、年代、世帯人数を抽出します。そして、各製品のターゲットや、どのような生活者にどの製品が刺さるのかを理解するために、膨大な製品数から単純平均と標準偏差を用いて概要を捉えた後、詳細なデータ分析を行います。 販売戦略は何が鍵? さらに、注力ブランドの選定では、プロモーションや割引なしで販売好調な製品は、商品力が高いと考えられるため、これらを拡充したいと考えます。販売好調な製品の優先順位を決める際にも、幾何平均を基準の一つにすることが考えられます。 分析の流れは? 全体を把握するためには、まず代表値を算出し、その際にデータの散らばりを確認します。その後、詳細のデータを分析します。データ分析は「何を見たいのか」により比較対象が異なるため、この点を整理しつつ仮説を立てることが大切です。この流れを習慣化することが望ましいです。

マーケティング入門

タイミングが鍵!市場成功の切り札

市場反応はどう見る? 今回の学びを通して、製品やサービスが市場で受け入れられるかどうかは、完成度の高さだけで決まるわけではないという点を改めて認識しました。たとえ市場分析を十分に行い、自信を持って開発したものであっても、タイミングやネーミング、見せ方などの要素により、爆発的なヒットにつながる場合もあれば、期待に反して市場からの反応が得られないケースもあると感じています。 普及要件はどう見る? このような不確実性がはらむ市場環境の中で、「イノベーションの普及要件」といったフレームワークは、製品やサービスの受容性を客観的に評価し、改善の方向性を検討するための有用な手がかりとなると確信しました。 売れる理由は何? また、私が担当している製品は、今回のケースのように明確かつシンプルにターゲティングできるものばかりではありません。それでも、類似商品の販売状況から「なぜ売れているのか」「なぜ売れていないのか」という視点で日々考察を深めることが非常に重要であると感じています。 市場動向はどう捉える? 今後は、日常業務においても意識的に他社製品や市場動向を分析し、自社製品の訴求ポイントや改善策に活かしていきたいと考えています。そして、ヒットしなかった商品について、見直すべきか方向転換すべきかの判断基準をどのように持つかという点も、今後の大切な学びのテーマにしたいと思います。

データ・アナリティクス入門

課題発見!データが導くヒント

データ分析は何に使う? まず、データ分析は単なる数値の羅列に意味を見出すのではなく、特定の問題を解決するために行うものです。いきなりあらゆるデータを収集しても、どの部分に着目すべきかがわからず、効果的な結果に結びつきにくいでしょう。したがって、まずは問題を明確に定義し、大まかな分析から始め、論理ツリーやフローチャートなどを活用してデータを分解します。この際、解決策に結びつくような意味のある分け方を意識し、比較対象を明確にすることが大切です。 問題解決はどう進む? また、問題解決のプロセスにおいては、「何が問題か(What)」、「どこに原因があるか(Where)」、「なぜその原因が生じたのか(Why)」、「どうすれば解決できるか(How)」という4つのステップに沿って、仮説をいくつか立てながら、検証を進めることが求められます。分析の際は、複数の仮説を網羅的に洗い出し、分析フレームワーク(3Cや4P、5フォース、PESTなど)を活用するのが有効です。例えば、ある期間の売上減少については、内部要因(販売店の比率、広告費、性年代別の購入者率、リピート率など)と外部要因(気温、感染症の流行、訪日外国人の数など)の双方を収集・比較し、ギャップが大きい部分に絞って深堀りを行います。最終的には、複数の解決策を挙げ、判断軸に基づいて最適な対策を選定するという流れになります。

戦略思考入門

実務に生かす学びの一歩

授業内容をどう実務化? 授業で学んだ内容を業務にどう活かすかを考える過程で、配車アプリと中古車販売事業のシナジーに関して、まだ自分の視野が狭く、知識が十分に定着していないと痛感しました。そのため、基礎から復習し直す必要があると感じています。 動画学習は何を教える? 動画学習では、規模の経済性において、生産量が月ごとに変動する場合、調整の仕方によっては不経済になる可能性があるという点が新たな学びとなりました。また、習熟効果に関しては、問い合わせに対応する際の時間差から、チーム内でのスキルのばらつきを感じることができ、これをどう改善していくかという対策の重要性を再認識しました。 具体策はどう進める? 具体的な取り組みとして、習熟効果を高めるために、まずは定例会議で事例の共有とポイントの説明を行うこと、また、よくある質問やその回答をまとめた資料を作成し、いつでも参照できる環境を整えることを計画しています。これにより、チーム全体の対応力を底上げできると考えています。 連携で成果はどう? さらに、範囲の経済性については、他部署と共同で展示会などを行う際に得られるメリットを整理し、具体的な提案ができるよう、事前に自社のバリューチェーンを再分析することを進めています。こうした取り組みを通じ、実務に直結する形で学びを業務に生かしていきたいと思います。

データ・アナリティクス入門

プロセス分解で業務改善の新たな一歩

プロセス分解の重要性とは? 問題の原因を探る方法として、プロセス分解が非常に有効である。例えば、広告であれば表示からクリック、クリックから申し込み(コンバージョン)といった形で細かく分解することができる。また、解決法(HOW)を検討する際にはA/Bテストが有効である。この方法では、比較対象以外の条件を揃え、目的を明確にすることが重要である。 数字だけではわからないことは? 現在の企画管理業務では、出てきた数字だけで分析や判断をしてしまうことが多い。しかし、出てきた数字の要因がどこにあるのかを探るためには、細かいプロセス分解ができなくても、大枠でのプロセスに分けて見ることができるのではないかと考えた。今回の講義を通して、A/Bテストの有効性を学べたが、A/Bテストの範疇を超えた検証(生産プロセスの改善や販売における改善検証)のやり方についても学びたいと思った。 データ分析の効率化をどう進める? 講義では、身近なデータを使ってプロセス分解を行う方法について触れられた。日々の業務におけるデータ分析のスピードアップや、分析に十分な時間を確保できているかを検証する必要を感じた。具体的には、データ収集、データ加工、分析、共有にそれぞれどれくらいの工数がかかっているのかを明確にし、さらに効率化して、より早く深い分析と共有を実践できる方法を探りたい。

データ・アナリティクス入門

仮説で紡ぐブランドの未来

変化にどう対応する? ビジネス環境は刻々と変化しており、すべての情報をあらかじめ把握することは難しくなっています。そのため、仮説を立てながら方向性を見出し、PDCAサイクルのスピード感を向上させることが不可欠だと感じています。仮説があることで、リソースを効果的に活用し、時間や費用の無駄遣いを防ぐことができると実感しています。 ブランドの価値はどう見る? 特に新規事業で新しいブランドを立ち上げる際は、単に機能面の優位性だけではなく、ブランドのストーリーや価値が重要になると考えています。そこで、ターゲット層に確実に響く戦略を構築するため、仮説検証を繰り返し行っています。 仮説検証は効果的? まずは以下の仮説を設定しました。 ① ターゲット層は単に高価格だけでなく、ブランドのストーリーに価値を見出す。 ② 既存の高級製品と比べ、性能面での優位性を示すことで購買意欲が高まる。 これらの仮説を検証するため、ユーザーへのインタビュー、限定販売での反応テスト、SNSやマーケットでのフィードバック収集を実施しました。もし仮説が誤っていた場合には、その原因を徹底的に分析し、新たな仮説を立て直しています。 このようなプロセスを通じて、ターゲットにしっかりと刺さる戦略を練り上げ、新ブランドの価値を最大限に引き出すことを目指しています。

マーケティング入門

自分発見!学びと挑戦の記録

イノベーションで何が変わる? 商品の売れる・売れないを考える際に、イノベーションの普及要件というマーケティングフレームワークを学びました。このフレームワークは、比較優位、適合性、わかりやすさ、使用可能性、可視性の5つの視点で商品を分析するものです。ある成功事例から、わかりやすいキャッチコピーや効果的なネーミングが、実際の商品価値を届ける上で非常に重要であると実感しました。 競合の罠はどう防ぐ? また、競合ばかりに意識を向けすぎる差別化の罠にも注意する必要があると学びました。万人向けの商品展開に固執せず、市場を細分化し、ニーズを深掘りすることで、顧客の価値観に沿った商品の提供が実現できると考えています。 どう伝えれば響く? さらに、イベントのタイトルやキャッチコピー、内容を企画する際には、イノベーションの普及要件を意識し、ターゲットにしっかりと伝えたい価値や訴求点が届くよう工夫していきたいと感じました。特に、比較優位性や分かりやすさの点については、直近のイベントで課題を実感したばかりなので、検証を重ねながらより魅力的に伝わる方法を追求したいと思います。 改善策はどう見つかる? 施策ごとにこのフレームワークを振り返り、学んだ視点を活かしながら、ネット販売などにおいて売れていない原因を分析し、改善策を考察していくつもりです。

マーケティング入門

マーケティングの基礎を楽しく学ぼう!

マーケティングとは何か? マーケティングとは、物が売れる仕組みを作ることです。顧客志向で物事を考え、販売や顧客のインサイトを深く理解し、売れる方法を考えて顧客満足につなげる手段です。世の中を見渡すと、自動販売機が良い例と言えるでしょう。コーヒーや清涼飲料水、炭酸飲料などをいつでもどこでも手に入れたいという顧客の需要を満たすことができるので、自動販売機は現在の生活に溶け込んでいます。このような例を参考に、尽きることのない需要を見出し、どれだけ便利に提供できるかを学び、仕事に結びつけていきたいと考えています。 バックオフィスの鍵は? バックオフィスの視点では、営業店や本部などの内部の人間が顧客となります。彼らが求めているのは、費用対効果の高いものです。それをどれだけシンプルに活用できる仕組みを作るかが現在の部署の鍵だと思います。そのための方法や手段を学び、仕組み作りに活かしていきたいと考えています。 基礎学習と実践の重要性 まずは、マーケティングの基礎を確りと学び、顧客志向で物事を分析する力をつけたいと思います。そして、現在の課題や問題を顧客目線で見直し、ブラッシュアップしていきます。どのようにすれば売れる仕組みができるのかを意識し、学んだことを同僚と日常的にアウトプットすることで理解を深めていきたいと思います。

データ・アナリティクス入門

データ分析で見る成長のカギ

比較の重要性って何? 分析の本質は比較にあり、効果を測定するためには、「Aがある場合」と「Aがない場合」を比較することが重要です。ただ「Aがある場合」だけを見ても、その効果を正確に測定することはできません。そのため、分析の目的に沿った適切な比較対象を選定し、分析したい要素以外の条件を整えることが必要です。この考え方を「Apple to Apple」と呼びます。 施策効果の見極め方は? 販促施策の効果を分析する際には、イベントやDM、SNSなどさまざまな方法がありますが、以前はアクションがあった顧客の反響のみを分析していました。今後は施策を行っていない期間の販売実績とも比較し、何をもって目標達成とするかを明確にして企画を立案します。データ分析を行う際には、まず分析の目的やゴールを明らかにし、どの情報を比較すればよいかを検討してから分析を進めなければなりません。 条件整理のポイントは? 「Apple to Apple」の原則に従い、分析対象以外の条件が揃っているかを確認することが重要です。施策を進める際には、データを蓄積するためにさまざまな条件を整えられるように企画します。また、エリア別の顧客属性分析を行う際に、どの比較対象が適切であるかについては、部署に持ち帰って相談し、より明確にすることが推奨されます。

アカウンティング入門

高級感と気軽さ、カフェ経営の秘密

非日常カフェのリスクは? week1とweek2を通して、2つの異なるカフェのビジネスモデルについて学ぶことができました。ひとつは、非日常の高級感を提供するコンセプトのカフェで、高単価な商品設定に合わせた売上原価や販管費がかかる点と、簡単に価格を下げることのリスクを理解しました。 日常カフェの戦略は? 一方、日常的な気軽さをコンセプトに据えたカフェでは、薄利多売モデルをとるため、商品価格の低さに加え、売上原価や販管費をできるだけ抑える工夫が求められていました。また、固定費を賄うために多くの顧客に購入してもらう必要がある点も学びました。 収益の違いは? この学びから、同じ業種であっても、ビジネスモデルによって収益性や費用の構成比が大きく異なることが明らかになりました。今後、同業他社との比較において、販売単価と特に販管費の構成比がどう異なるのかを詳細に分析していきたいと考えています。 PLギャップをどう? さらに、財務三表を公開している企業のデータを収集し、自社のPLが目指すビジネスモデルとどの程度一致しているか、またどの項目にギャップがあるかを検討することが重要だと感じました。ギャップが見られる場合には、どのような施策で戦略と数値を整合させるかという具体的な改善案を出していくことが課題となるでしょう。

「分析 × 販売」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right