アカウンティング入門

利益のカギを探る!P/L徹底分析の旅

P/Lの構造を理解するには? P/Lの構造を理解できたと思います。会社が利益を出すためには、ターゲットとする顧客や提供価値をブレずに一貫性を持って進めることが重要だということがよくわかりました。P/Lの数字の意味を考えながら、今後も学習を続けていきたいです。 利益の源泉をどう捉える? 自社のP/Lを詳細に読み込み、利益の源泉や問題点を現時点よりさらに深く理解したいと思います。そして、その問題点に対して、売上増や変動費の削減といった具体的な解決策を考え、自分がまず何をすべきかをアイデアとして出したいです。 自部門の数字をどう理解する? まず、自部門の数字の意味を深く理解する必要があります。そのため、腑に落ちるまでP/Lをしっかりと読み込み、分からないことがあれば書籍や人に聞くなどして解決します。本講義が終了するまでに、自部門の問題点に対する解決案を最低3つは会社に提案して実行したいと思っています。

アカウンティング入門

ビジネスモデル分析で見つけた新たな視点

ビジネスモデルの理解を深めるには? ビジネスモデルによって提供される価値が異なるため、どこに費用がかかり、どのように利益を生み出すかを理解することができました。他社のP/Lを見比べることで、その特徴や費用のかけ方がわかり、彼らの戦略を想像する手がかりになると感じました。 自社の毎月のP/Lをどう読み解く? まず、自社の状況や自分が関わる事業の状態を、毎月のP/Lをしっかりと読み込むことで理解していきたいと思います。そして、単に計画と実績を把握するだけでなく、なぜそのような結果になったのかを検証し、今後の対策に何が必要かを自分の課題として業務に活かしたいと考えています。 直近と過去のP/Lをどう比較する? さらに、直近のP/Lと過去のP/Lを比較して、どの数字がどのように変化しているのかを分析し、現在の自部門の問題点や必要な対策を明確にして、自分のアクションプランに取り入れていくつもりです。

データ・アナリティクス入門

代表値の落とし穴と細部の魅力

代表値の意外な落とし穴は? 代表値の有用性と、その落とし穴について理解が深まりました。データを活用する目的に応じ、代表値の背後にある背景を把握するためには、必要な手間を惜しまない姿勢が大切であると再認識しました。 毎月の数字はどう? また、毎月の売上や費用といった数字は、ひとまとめにすると他月と大きく変わらないように見えても、実際には中身が大きく異なることが多いです。このため、詳細な項目の変動にも着目し、単なる異常の有無だけでなく、次月以降への影響などを踏まえて、より深い検証に努める必要があると感じています。 内訳の分析は必要? さらに、月次決算の報告前の分析においては、全体の数字(代表値)だけでなく、必ず内訳の変動を比較することが重要です。単月の変動に留まるのか、次月以降も影響が及ぶ傾向があるのか、または対策が必要な内容なのかを、各要素ごとに分けて分析するよう心がけたいと思います。

データ・アナリティクス入門

MECEで広がる分析の新境地

MECEの理解を深めるには? MECEの考え方は非常にわかりやすく、理解することができました。これまで要因解析に活用していたロジックツリーを、別の目的の分析にも使えると知り、非常に驚きました。また、売上を単価と数量に分けて分析する方法も、実践しやすく感じました。 数字の分解で深掘り分析 要因分析では、数字を分解して深掘りすることが広く応用できると考えています。MECEをフレームワークとして理解したので、実際に分析する際には層別が漏れなく、重複がないかを図示して見える化し、確認していきます。 精度向上を目指す次のステップ 定性的な要因分析も含めて、まずはロジックツリーを実際に描いてみることから始めます。その上で、MECEの観点で層別が適切にできているかを図を用いて確認し、分析の精度を向上させたいです。また、これらの図を使って関係者と共有し、レビューすることで、より精度アップを目指します。

クリティカルシンキング入門

問題解決力で未来を創る!

どんな問いを立てる? 問題を明確に把握するためには、「問いは何か?」を起点にすることが重要です。問いを残し、それを意識し続け、組織全体で共有して方向性を統一することの重要性を学びました。また、データ分析では、データを加工し、数字を視覚化することで効果を高めることができると感じました。 論理枠組みはどう? 来年に向けた社内イベントや研修の企画書を作成する際には、今回学んだMECEやピラミッドストラクチャーを活用して、どこに問題があるかを特定し、論理的な枠組みを構築したいと考えています。これにより、主張を適切な根拠で支えられるようにしたいです。 根拠共有は十分? 来年度の社内イベント、特に新入社員プログラムの計画案を立てる際には、今年の結果を振り返りながら、アンケート結果を基に問題を特定し、プロジェクトチーム内でその情報を共有してしっかりと根拠づけを行っていくことを目指しています。

データ・アナリティクス入門

分析の裏側が開く未来への扉

なぜ生存者バイアスが起こるの? 思い返すと、分析に取り組む際に生存者バイアスの影響を受けていることがあったと感じています。既存の情報に頼るだけではなく、分析の目的や対象をしっかり整理することが、正確な分析と信頼できる情報提供につながると実感しました。 データの見方はどう? 現在の業務では、既存のデータをまとめて数字や報告資料にすることが主ですが、そのデータから得られる考察や予測も盛り込みたいと考えています。さらに、現状のデータだけに頼らず、より良い分析のために不足している情報や、精度を高めるためのデータ収集方法についても検討する必要があると思っています。 どう全体を俯瞰する? また、前月の稼働状況を報告する際、これまで前月と先々月の比較に終始していましたが、今後は全体を俯瞰する視点と詳細に注目する視点の両方を取り入れ、将来の予測や考察も盛り込んだ報告ができればと考えています。

クリティカルシンキング入門

MECEで探る増収減益の謎

基本理解の鍵は? MECEの基本的な考え方を理解できたことが良かったです。特に、基本となる3つの分け方についても学び、多くの知見を得ることができました。 増収減益の原因は? 現状の課題は増収減益です。原価上昇に対して売価設定が追いついていないのか、リカバリーにかかる費用が過剰なのか、またはお客様の要望が厳しく対応が後手に回っているのかなど、各フェーズで様々な視点から原因を探っていきたいと考えています。 数字分解の要点は? 今ある数字を分解するときは、MECEを意識することが重要だと感じました。このロジックを繰り返し行い、確実に身に着けるためには反復が必要です。 改善策の展望は? 来週の営業会議では、増収減益の原因を分析し、改善策を提示する予定です。そのため、今週中に必要なデータを整え、土日に詳細な分析を行い、週の前半には問題の特定と改善策の検討を済ませたいと思います。

アカウンティング入門

数字で見つける経営の物語

数字で見る変化は何? 数字から課題を読み解くことで、ビジネスモデルの改善に繋がる具体的な手法を理解できました。以前は無機質だと感じていた損益計算書が、実は有機的な活動の結果として表れていることに驚かされ、経済活動への興味が一層深まりました。 多角的比較は意欲? また、販管費率や売上原価の比較はもともと行っていたものの、他業種と相対的に見ることへの抵抗感が薄れました。特に海外展開している同業他社の各エリア別の業績比較を通して、国ごとの現状を詳しく分析してみたいという意欲が湧いてきました。 決算で理解を深める? さらに、公開されている各社の決算報告や自社の過去実績を再確認することで、より深い理解を得たいと考えるようになりました。加えて、決算報告をじっくりチェックする中で、気になる企業の株式購入も検討するようになり、普段の生活での視点に変化が生まれたと感じています。

クリティカルシンキング入門

MECEで考える提案資料作成のコツ

MECEとは何か? MECEというロジカルシンキングの基本を学びました。この方法は、必要な要素を網羅しつつ重複しないようにする考え方です。そのために、層別分解、変数分解、プロセス分解という3つのパターンがあることを理解しました。 なぜMECEが重要? 営業面で提案資料を作成する際に、MECEを意識することで考慮漏れの無い提案ができ、出直しや再考を防ぎ、より効果的な資料作成に役立てられると考えています。また、トラブル発生時の対策報告でも、この考え方は活かせると思います。 結論にどう導く? これまでは結論ありきで、その根拠のために分析を行っていました。しかし、このプロセスを逆転させて考える必要があると感じています。同じ数字でも視点を変えて分解すれば、見え方が変わるということを意識し、分析結果を複数に増やしていくことで、より説得力のある結論に繋げていきたいと思います。

データ・アナリティクス入門

数字から見える学びの世界

データの傾向は見えますか? データはビジュアル化することで多くのことが見えてくると感じています。そこで、まずは業務の件数や週平均、月平均などの数値を確認し、どのような傾向があるのか把握することから始めたいと思います。 年次データのばらつきは? 次に、年単位でのデータをヒストグラムに落とし込み、ばらつきや偏りがあるのかを検証してみたいです。年代ごとの偏りから、ある種のマーケティング施策が影響しているのではという仮説を立てることができ、実践演習で学んだ知識が非常に役立ちました。 平均値の使い分けは? また、単純平均だけでなく、加重平均や幾何平均など、状況に応じた平均値の使い分けが正しい分析につながるということを再認識しました。さらに、数字のばらつきを評価するために、標準偏差のような指標を実際の業務データで算出し、その計算方法や数字の感覚を磨いていきたいと考えています。

データ・アナリティクス入門

データ分析でビジネスを変革する方法

「分析の目的」をどう明確化する? 分析のポイントを誤ると意味がなくなるため、「何のために」「どの部分を」分析するのかを明確にする必要があります。数字を見る際には、その意味がはっきり理解できなければなりません。特に知識がない人にもわかりやすい数字の提示の仕方が重要です。 ビッグデータ活用の効果とは? ビジネスにおいて、数字はある程度の説得材料となり、クライアントにとっても理解しやすいものです。ビッグデータを活用して根拠資料としてクライアントにわかりやすく伝えることができれば、分析の意義は高まり、ビジネスチャンスも広がります。 分析力を高めるステップ まずは分析の基礎を固めることから始め、目的や意図を明確にすることで分析力を身につけます。それにより、根拠のある資料を作成しクライアントに明確性をもって伝達できるようになり、結果としてビジネスチャンスも広がるでしょう。

データ・アナリティクス入門

数字が語る成功への道

分析と代表値の使い道は? 分析の基本プロセスや代表値の種類について、非常にしっかり理解できています。実際の案件分析やKPIの見直しにおいて、売上、利益、譲渡額、成約期間など、各データのばらつきに応じて単純平均、加重平均、中央値などの代表値を使い分けることができています。また、ばらつきや2SDルールなども活用し、最適な視点からデータを分析している点が印象的です。 説明とKPIの関係は? 現状、データ分析の結果に基づいてKPIが作成・発信されているため、今後はその数値が目標となる理由を、メンバーがより納得できる図表を用いて可視化し、説明できるようにしていきたいと考えています。同時に、分析のプロセスにおいて、目的の明確化、仮説の設定、データ収集、そして仮説(ストーリー)の検証の手順を、メンバーが理解しながら適宜視点とアプローチを選択できるよう指導していく所存です。

「数字 × 分析」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right