クリティカルシンキング入門

自分変革のヒントがここに

なぜアウトプットが大切? クリティカルシンキング講座を通じて、学んだ知識や将来のありたい姿について整理する機会を得ました。その結果、自分に不足している点や今後習得すべきスキルについて明確な指針が見えてきました。また、インプットだけの知識よりも、アウトプットを意識した知識の方がはるかに習熟度が高いことを、この六週間で実感しました。 変化の波にどう乗る? 私の業務はソフトウェア開発であり、変化の激しい現代において特にその業界は急速に変わっています。生成AIの登場に伴い、ソフトウェアエンジニアの働き方も大きく変化している現状にあって、常に消費者のニーズを満たす製品を生み出すためには、クリティカルシンキングが大きな基盤となると感じています。 意見はどう伝える? また、MTGでのディスカッションでは、認識のずれや歪みが生じうることを意識し、経験豊富な上司やメンバーの意見をただ受け入れるのではなく、自分の意見も積極的に伝えることを心がけています。さらに、ソフトウェアの機能開発においては、ユーザーが本当に求めているものは何かを常に考えながら、ユーザーの期待に応える製品作りに取り組んでいます。

データ・アナリティクス入門

分解で掴む業務改善のヒント

どこにボトルネック? 問題の原因を明らかにするには、業務プロセスを分解して、どの段階にボトルネックがあるかを特定することが重要だと学びました。実務ではインターネットを活用した営業を行っていないため、A/Bテストは実施しませんが、同一期間・同一条件下で検証項目を比較するという手法は、他の場面でも十分に応用できると感じました。 セグメントはどう見る? 自部門で伸び悩んでいる事業についても、まずは問題の原因究明に取り組み、適切な対応策を検討する必要があると考えています。そのため、部門内で営業セグメントごとに実績を分析し、各セグメントの問題点を洗い出した上で、具体的な対策を立案・実施し、再度分析するというサイクルを構築したいと思います。 対策はどう実施? 具体的には、3月末時点でのセグメント別業績データをもとに、前年度と当年度の成長率を比較します。低迷しているセグメントについては、問題の原因を徹底的に分析し、翌年度に向けた対策をまとめ実行します。その後は、各四半期ごとに進捗を検証し、現状を把握するとともに、必要に応じて追加の対策を講じるという業務改善の仕組みを根付かせることが目標です。

クリティカルシンキング入門

正しいイシューが未来を切り開く

イシュー設定の正しさは? イシューの立て方は、その後に考えるべき内容や出てくる回答に大きな影響を及ぼします。限られた情報を根拠だけに頼り施策を考えることは危険であり、正確なイシュー設定が求められます。正しいイシュー設定を行うには、現状を正確に把握しつつ、視野や視点を柔軟に変えながら検討する必要があります。 協働時の意見ズレはどうなる? また、顧客や上位者と協働する中で、意見のズレが生じることは避けられません。たとえ個別具体の解決策を提示したとしても、そもそもの課題認識やイシュー設定に誤りがあれば議論が進展しません。そのため、まずは現状の確認と正確なイシュー設定をしっかりと行い、関係者間で内容に合意した上で、具体的な課題や施策を検討するファシリテーションを心がけることが重要です。 セルフチェックは意味ある? 資料作成の際には、「そもそものイシューは何なのか?検討する必要があるのか?」というセルフチェック項目を追加します。また、日々活用している生成AIにもこの点を伝え、イシューが不明確な場合にはこちらからの指摘を求めなくてもフィードバックを受けられるような仕組みを講じたいと考えています。

データ・アナリティクス入門

仮説思考を活用したデジタル化挑戦記

仮説思考の基本は? 仮説思考は、ビジネスのスピードと精度を向上させ、説得力を伴った意思決定を行うために重要です。このプロセスを実践するには、まず複数の仮説を立て、網羅性を持たせることが必要です。仮説を立てる際の重要なツールとして、フレームワークを活用することが推奨されます。仮説には、結論の仮説と問題解決の仮説があり、特に問題解決の仮説では、what、where、why、howの順に考えることが基本です。 デジタル化の進め方は? 私の仕事の一環として、保険手続きを紙からデジタルへと移行させる方法を模索していますが、現状では多くの既存データが十分に活用されていないと感じています。そのため、仮説思考を取り入れながら、デジタル化率を向上させるための施策を複数考えたいと思います。 実行策の視点は? まず、手続きの種類ごとにデジタル化率を向上させる余地があるか、既存データを基に複数の網羅的な仮説を立てます(where)。次に、デジタル化が進んでいない理由を明らかにするため、幾つかの原因を挙げます(why)。そして、実現可能性やコストを考慮しながら、具体的な実行策を練ります(how)。

アカウンティング入門

資産と負債が教えてくれた経営のヒント

資産と負債はどう考える? B/Sにおける資産(お金の使い方)と負債(お金の集め方)の基本的な考え方が理解できました。資産・負債という言葉は、少しとっつきにくく、理解が難しい印象を受けがちでしたが、「お金を何にどう使うか?」や「お金をどう調達するか?」という風に読み替えると、会社だけでなく個人の日常にも通じる考え方であることがわかり、以前より親しみやすく感じられました。資産は収益確保の源泉となるものとも捉えられるため、この点については今後、自分なりに考察を深めてみたいと思います。また、資産の大きさが経営にどのような影響やパラメーターとなるのかも検討してみる価値があると感じました。 B/S分析の活用は? 現状の業務において、B/S分析をどのように活用できるかという具体的なイメージはつかみにくかったものの、まずは自社のB/Sを確認し、財務状況を把握することから始めたいと考えています。経営者の視点に立つと、負債に対して自社の返済能力(稼ぐ力や本業以外での収益)を踏まえ、資産の売却やさらなる借入による追加投資が可能かどうかを判断する一つの指標となると感じるため、今後の学びに生かしていきたいと思います。

戦略思考入門

店舗戦略に効く規模経済の極意

規模効果の見極めは? 規模の経済性に関するケースを通じて、具体的な状況下でその有効性を判断する際には、自分のビジネスの特性や置かれている環境、さらに利用するビジネスフレームワークを十分に理解することが重要だと学びました。十分な理解なく実行に移すと、誤った判断をしてしまう危険性があるため、現状にどの法則が適用できるのかを見極め、具体的なフレームワークと比較しながら判断する必要があります。 店舗計画の判断は? また、自分が担当する店舗で商品を計画する場合、単に利益が出ない、あるいはコストがかかるといった理由だけで製造量や発注量を減らしたり、品揃えを削減したりすると、その商品を求めて来店している顧客の支持を失い、店舗全体の利便性が低下して客数が減ってしまう恐れがあります。 品揃えの影響は? そのため、品揃えを検討する際には、各商品分類の欠落がないかどうかや、販売実績が低下して消費者の来店に影響を与えていないかを見極める視点が必要です。さらに、公開されているPOSデータでリピート率の高い商品や、自店舗が所在するエリアごとの傾向も参考にしながら、より実践的な判断を行っていきたいと考えています。

戦略思考入門

戦略で切り拓く挑戦の道

戦略と戦術の違いは? 戦略とは、目的達成のための方向性を定めるものであり、戦術はその戦略を実行する具体的な手段や行動計画です。戦略的思考とは、目標を明確に設定し、最短・最速で到達するために必要な行動を取捨選択して最適な道のりを描く方法です。どの道を進むにしても障害は存在するため、それらを乗り越えるためには独自性が重要です。リソースが限られている中で、やるべきことと不要なことを明確に分けることで、最小限のリソースで目標に達することが可能となります。 中期戦略の見直しは? 事業中期戦略策定の業務においては、以下の三点に具体的に取り組んでいます。まず、事業課題の抽出とゴール設定について、現状のゴールが単なる方向性にとどまっているため、より具体的な目標に落とし込む必要があります。次に、実施すべきこととそうでないことを取捨選択しているものの、不要な活動をやめる理由が十分に説明されていないため、メンバーの納得が得られていないと感じています。ここは戦略的思考に立ち返り、再検討する必要があります。最後に、重要な要素である独自性についても、自社事業における整理が不十分であるため、再度見直すことが求められます。

データ・アナリティクス入門

ばらつきで読み解く学びの軌跡

なぜばらつき重視? データ全体を把握する中で、ばらつきに注目する重要性を再認識しました。要因分析を行う際、ばらつきを理解することで特定の傾向や変化の大まかな枠組みを捉えられる可能性があると感じます。普段は個別案件や特定のセグメントに意識が向きがちですが、基本的な統計の観点として必ず押さえておくべきだと思いました。また、ばらつきの程度を数値的にどの差や変化として捉えるのが有効かについても関心を持ちました。 営業データの本質は? 例えば、自社の営業データでは、長期的なトレンドは大きく変わらないという認識があり、特定の年度に限った動きが見られなければ大幅な変化はないという思い込みがありました。基本統計としてのばらつきを正確に把握することとともに、数値の背後にある実務上の変化を探るため、定量データだけでなく定性情報にも着目しようと考えました。 分析軸は見直すべき? さらに、データ分析の軸を改めて設定し、その意味を整理する必要性を改めて感じました。特に、データに見られるばらつきが、営業活動の現状を示す行動や外部要因の影響をどのように反映しているのかを把握することが大切だと実感しました。

データ・アナリティクス入門

仮説を超えて広がる学びの可能性

仮説はどう考える? 仮説を立てる際には、ただ闇雲に考えを巡らせるのではなく、3Cや4Pといったフレームワークを有効に活用することを学びました。その上で、仮説は複数立てることが重要であると感じています。 本当に必要なデータは? また、データ収集に関しては、まず既存のデータを検討し、不足している情報がある場合に新たなデータを集める必要があると理解しました。立てた仮説に都合の良いデータだけを選ぶと説得力が欠けるため、注意深くバランスをとることが求められます。 問題の原因は何か? さらに、業務における障害分析では、問題の解決に向けた仮説の立案が主な目的となります。現状で行っている真因分析とも連動し、What、Where、Why、Howのプロセスを意識して問題を深く掘り下げることが必要だと感じました。 実践で学ぶヒントは? 実際、日々発生する障害や事象について原因を深掘りし、複数の仮説を検討する癖をつけることで、経験を積んでいきたいと思います。ただし、データ収集の方法には工夫が必要であり、過去の事例をカテゴリー分けするなど、データを整理・加工する手法の改善が求められると考えています。

データ・アナリティクス入門

あなたを動かす学びの4視点

本質問題、どう捉える? 今回の学習では、問題解決のための4つの視点――What、Where、Why、How――を意識する重要性を学びました。特に、解決すべき本質的な問題(What)を明確にし、理想と現状のギャップを把握することが、メンバー間の認識のズレを防ぐ上で非常に重要だと感じました。 サービス提供は課題? また、長期的な利益向上のためには生徒数の増加が求められる一方、現状のサービス提供体制ではスタッフへの負荷増大や顧客満足度の低下といったリスクも伴います。これに対し、各講師が対応可能なクラス数や新人講師の育成にかかる期間・コスト、顧客満足度に影響を与える要素など、具体的な定量データを基に現状を整理し、対策の優先順位を明確にすることが必要だと実感しました。 日常業務、どう対処? さらに、日常業務においても、状況把握や効果検証、施策の試算などのプロセスにおいてWhat、Where、Why、Howの視点を取り入れることが重要です。分析開始前にロジックツリーなどを用いて問題の全体像を整理し、関係するメンバーと認識を共有することで、より精度の高い対応策を講じることができると感じました。

マーケティング入門

体験でつながる感動の軌跡

どんな体験を創り出す? 商品開発においては、単に製品を作り売るだけでなく、その製品にまつわる体験をパッケージとして展開することが非常に重要だと感じています。これまで「何を売るか」、つまり商品そのものに注目しがちでしたが、今後は「どんな体験を提供したいか」「どのような感動を与えたいか」という体験面に着目した開発を進める必要があると思います。この視点を取り入れることで、既存のものでも新たな体験を創出できる可能性が広がると感じました。 伝え方をどう変える? また、営業店や本部への情報発信についても、現状は商品そのもののみに焦点が当たっていると感じています。これからは、商品を通じてどのような体験が得られるのか、何がどう便利になりどのような問題解決に繋がるのかといった点まで、積極的に発信していくことを意識していきたいと思います。 購入体験で何を感じる? さらに、物を購入する際にどのような体験ができるのかに着目することが大切だと感じています。加えて、広告や販促における表現方法にも注目し、その表現から学べる点を取り入れて、まずは体験を重視した視点をしっかりと持てるよう努めていきたいと思います。

戦略思考入門

数字で納得!業務改革の新提案

従来方法を見直すには? 長年同じ業務に従事していると、ついつい従来のやり方に固執しがちです。しかし、限られた時間内で多くの成果を上げるためには、効率の悪い業務に割く時間を削減する必要があります。なお、やるべきことと不要なことの判断は一個人だけで決められるものではなく、客観的なデータを基に周囲に説得力をもって説明することが不可欠です。 指標はどう活かす? 例えば、ウェブサイトの運営では指標が明確なため、ページビューが少ないコンテンツに充てる時間や外注費を抑え、逆に成果の高いコンテンツには多くの時間と予算を割り当てる工夫が可能です。こうして限られたリソースを効率的に活用することで、より良い成果が見込めます。 定量化の壁を超えるには? 一方で、総務業務のように業務量が定量化されていない場合、周囲を納得させるためのデータ整理にはかなりの時間を要します。そのため、私自身はウェブサイト関連の業務については効率化を進める一方、総務業務に関しては現状維持を選択せざるを得ない状況です。 このように、合意形成に多大な時間とコストがかかるタスクをどのように効率化するかは、今後の大きな課題となります。
AIコーチング導線バナー

「現状」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right