データ・アナリティクス入門

分析で見える明日のカタチ

分析の目的は何? 分析とは、物事を具体的に明確化し、より良い意思決定へ結びつけるための手法です。より良い意思決定を行うには、まず目的をはっきりと定め、その達成に向けた具体的な比較対象や評価基準を設けることが重要です。 比較の意図は? 目的に沿った比較対象を設定することで、分析結果の見せ方にもメリハリが生まれ、伝えたい意図を明確に示すことができます。データの比較やグラフの工夫により、情報を読みやすく、効果的に伝えることが可能となります。 事例の意味は? たとえば、人事部門におけるデータ活用事例としては、以下のような取り組みが考えられます。制度導入効果の検証では、退職率や従業員満足度を過去の実績と比較し、制度の効果を測ります。入職・退職の動向把握では、社内や業界全体のトレンドを把握することが重要です。また、配置や異動の最適化、研修やスキル管理、エンゲージメントの可視化といった分野でも、データを基にした分析が行われています。 退職率の分析は? 具体的に退職率の分析に取り組む場合、まず上司との認識を合わせ、分析の目的を明確にすることが必要です。目的としては、人材の流出抑制や制度改革の効果検証、さらには業界・社内の現状把握などが挙げられます。 比較基準はどこ? 次に、自社内の過去の実績や、制度変更前後のデータ、同業界・同地域・同規模における最新のトレンド、さらには年齢や勤続年数といった属性別の変動など、具体的な基準を設定して比較を行います。 伝達方法は? さらに、複数のグラフや推移グラフ、色付けやサイズ変更などを用いて、分析結果の意図をより明確に伝えることが求められます。このような取り組みを通して、目的に沿った分析を進めることが、より良い意思決定へとつながっていきます。

戦略思考入門

捨てる勇気が生む未来の可能性

捨てる重要性とは? 捨てることの重要性は、明確な判断軸を持って取捨選択することにあります。その判断基準は、単一の要素だけでなく複数の要素から多面的に検討することが必要です。また、仮定思考を用いて未来を想定しながら進めることも必要です。 どんな評価が重要? 今回学んだことの一つとして、売上や利益の定量的な基準だけでなく、顧客との関係性といった定性的な基準も含めて、投資対効果(ROI)を考えて優先順位を決めることが改めて整理できました。捨てることが顧客の利便性を増す場面もあり、新しい意見を取り入れることで無駄を省くことができます。自社でできないことは外部に任せることも重要です。私自身も業務遂行で違和感を覚えたことを業務改善に活かしてきました。これからもメンバーの意見を重視し、改善に繋げていきたいです。 リソースの使い方は? 営業組織として、限られたリソースで最大の成果を出すための取捨選択はこれまでも行ってきましたが、さらなる磨きをかけたいと考えています。働き方の面では、長時間労働になりがちな現状を変え、チーム全体の生産性向上に努めたいです。具体的には、自組織で行わない業務は他のリソースに任せたり、その業務が顧客利益に直結するかを見極めたりすることが重要だと感じました。 顧客戦略はどう? 最終的には、自組織の顧客戦略にもこれらの考え方を応用していきたいです。顧客アプローチの優先順位付けでは、売上や利益の定量的な要素だけでなく、顧客との関係性、成長予測といった定性的な基準も取り入れたいと考えています。判断基準や軸を明確にし、それをメンバーに伝えることが重要であると感じました。過去の経験や直感に頼るだけでなく、論理的な基準で判断する姿勢が求められると反省しています。

リーダーシップ・キャリアビジョン入門

モチベーション向上の秘訣を探る振り返り

PDCA振り返りは何? これまで、メンバーとの業務の振り返りミーティングはPDCAのためのものと考えていましたが、それがメンバーのモチベーションを上げる効果もあることを学びました。振り返ってみれば、上司からのフィードバックは改善点も含めて嬉しいものであり、次回への意欲にもつながっていたことを実感しました。 目標設定はどうする? モチベーションを高めるには、尊重、目標設定、フィードバック、信頼感の醸成という4つのステップが重要とされています。この中で、尊重と信頼感の醸成はある程度できていると感じていますが、目標設定とフィードバックはもっと意図的に行うべきだと考えています。 衛生と動機の違いは? また、衛生要因と動機付け要因を別々に考えていなかったことにも気付きました。衛生要因は不満を解消するものであり、動機付け要因は満足度を上げるものです。この視点を持つことで、どんなに動機付け要因を強化しようとしても衛生要因が満たされていなければ限界があるということを理解しました。 振り返りの伝え方は? 振り返りミーティングについては、自分だけでなくミドルマネージャーにも「モチベーション向上のため振り返りが重要である」という観点をしっかり伝え、重要性を認識してもらいたいです。また、メンバーとの1on1では、衛生要因と動機付け要因についても分けて質問し、現状を把握するように努めます。 1on1で現状は何? 11月中にはメンバーとの1on1で衛生要因と動機付け要因を分けてモチベーションの現状をヒアリングし、その結果を関わるマネージャー陣とも共有する予定です。この結果を踏まえ、考え方についてもしっかりと意見をすり合わせるミーティングを設定し、適切なインセンティブを考えていくつもりです。

クリティカルシンキング入門

批判的思考で深める分析術

本当に合っているか? 大前提として、「その答えは本当に正しいのか?」と自分自身に問いかけ、批判的に考えることが重要です。以下の手法を活用していきたいと思います。 整理のポイントは? まず、データを視覚的に整理し、合計や割合、昇順下降順で加工することで視覚的に情報を得られるようにします。全体を定義したうえで、漏れがなく重複しないように(MECEの原則に基づいて)分解を行います。この際、「いつ」「誰が」「どのように」という切り口から考えることがポイントです。 どの角度で考える? さらに、分析を効率的に進めるために型やフレームを身につけることが大切ですが、まずは手を動かし、そこから見えてくるものに対し「この角度はどうだろう?」や「この視点に漏れはないだろうか?」と批判的に思考を繋げていきたいと思います。 分析の仮説は? 営業戦略やプロジェクトの方針を検討する際には、営業データを多角的に収集することを心がけます。しかし、現状の分析が広がりすぎてしまう傾向があるため、大まかな見立てを立て、仮説を持って分析を行えるようにしていきたいです。 伝え方の工夫は? また、分析結果や方針を伝える際には、データを視覚的に整え、受け手の理解を深める努力をしたいと思います。具体的には、次のことを心がけます。まず、業務が「誰にとっての」「何のための」「どこまでをゴールにした」ものなのかを明確にします。そして、事象を分析する際には、必要なデータが十分に揃っているか確認します。作業を進める中で、分析に漏れがないか、異なる角度から検討が可能かを一度立ち止まって考察します。最後に、データを視覚的にわかりやすく作成することで、自身の分析にも役立ち、他者への説明の際にも理解しやすくなるよう努力します。

データ・アナリティクス入門

ロジックツリーで解決策が見えた!

問題解決の基本ステップは? 問題解決は段階的に考えることが重要です。まずは「What」として、何が問題なのかを明確にし、あるべき姿と現状を把握し、これについて周囲と合意を取ります。「Where」では問題がどこにあるのかを特定し、「Why」ではなぜその問題が起きているのかを分析します。そして「How」では、問題をどのように解決するかを考えます。 ロジックツリーで何が変わる? ロジックツリー(MECE:もれなく・だぶりなく)は、問題を解決する際のWhere、Why、Howの各段階で有効に活用できることがわかりました。これを様々なシーンで使えるように、もっと積極的に取り入れていきたいと考えています。 問題をどう分解するか? 問題を分解する方法には、層別分解と変数分解(掛け算)の2つがあります。これまで意識して使っていなかったので、状況に応じてこれらの方法をうまく引き出せるようにしたいです。 共通認識をどう持つ? 計画やあるべき姿が明示されていないケースが多くあります。このため、まずロジックツリーを使って問題を以下のように切り分け、可視化し共通認識を持つことが大切です。解決策を提案する際にも、すぐに実現可能なことだけでなく、様々な解決案を考慮し、長期的に良い方向に進むための基礎となる資料を作成していきたいです。 MECEをどう活用する? また、数値データでない分析においてはMECEを意識し、作業に取り掛かる前にWhatやWhereに時間をかけることが重要です。変数分解も選択肢として考慮し、「分析の本質は比較であり、意思決定のためのものである」という点を忘れずに実践していきます。今後は部下に教えることも視野に入れ、データを整理しながら作業するように心がけたいと思います。

リーダーシップ・キャリアビジョン入門

リーダーシップ開発の理論を実践に活かす

リーダーシップは鍛えられる? 今週の学習を通じて、「リーダーシップは開発可能である」という理論を具体的な事例を基に理解を深めることができました。マネジリアルグリッドについての学習では、リーダーの性質を「業績への関心」と「人間への関心」の2つの軸で分類し、リーダーの行動を整理して理解することができました。「業績への関心」が高いだけでも、「人間への関心」が高いだけでもうまく行かないということを具体的な事例を通じてイメージすることができました。 リーダー行動はどう決める? さらに、パス・ゴール理論についての学習では、「環境要因」と「部下の適合要因」によってリーダーの取るべき行動が変わることを学びました。パス・ゴール理論では、リーダーの行動を「指示型」「参加型」「支援型」「達成指向型」に分類しますが、2つ以上のタイプの行動を求められる場面もあるため、実際の業務を通じて効果的な行動を模索していく必要があると感じました。 学びをどう活かす? この学習を通して、マネジリアルグリッドを用いて自分の行動タイプを理解することができ、その理解を元に現状の自分に足りない部分を補うように努めたいと考えています。また、パス・ゴール理論を使ってチームの目標達成への道筋を描けるようになったので、職場でのメンバーに対する行動に取り入れていきたいです。 メンバー交流はどうする? 業務の中では、メンバーそれぞれが意見を話しやすいように促し、普段から話を積極的に聴く姿勢を示していきます。また、業務上の指示に関しては、メンバーが受け入れやすいように丁寧に説明し、納得して行動に移せるようにします。さらに、メンバーの自立性がそれぞれ異なることを考慮し、それに応じて行動を意識的に変えていきます。

クリティカルシンキング入門

問いが生む新発見の一歩

状況把握はなぜ大切? 適切な問いを立てるには、状況やタイミングを正確に把握することが大切です。事前に週次、月次、四半期など、どのタイミングで問いを確認するのが最適かを想定し、社会情勢や同業他社、自社、部署、チームといった複数の視点から状況を観察することが求められます。 記録はどう活かす? 問いは疑問文の形で設定し、具体的かつ一貫性を持った内容にすることが重要です。一度問いを立てたら、記録に残しておくことで、記憶が薄れたり問いの内容が変わってしまうのを防ぐ効果が期待できます。 属人化防止はどうする? 部署やチーム内の課題は、個人で問いを立てて解決に当たるのが難しい場合が多いため、まずは属人化を防ぐために、メンバーの適切な活用やスキル向上、マニュアル整備などの基盤作りを進めることが必要です。その後に問いを共有し、複数の視点から解決策を検討することで、メンバー全員の責任感ややりがいの向上にもつながります。 共有はどうすべき? 現在は週次や月次のタイミングで目標設定や振り返りを実施しており、その際に業務上の課題に対する問いを立てるようにしています。ただし、上位者が下位者に問いを押し付けると、強制感が生じる可能性があるため、全体ミーティングや少人数での検討など、状況に応じた共有方法を工夫しています。 GAP分析の意義は? また、GAP分析を活用して理想の状態と現状の差を明確にし、「なぜこのギャップが生じているのか」を問いの形で具体的に検討する手法は非常に有効です。こうした問いを通じて、問題点を繰り返し立ち返りながら業務改善につなげる実践例を、特にマネジメントや部署・チーム単位でのケーススタディとして共有いただけると、さらなる学びにつながると考えています。

データ・アナリティクス入門

データ分析で失敗しないための初めの一歩

データ分析の初め方とは? データ分析を始める際、最初に注意すべき点は、いきなり「How」に飛びつくのではなく、まず原因を特定することが重要です。また、何を理想的な状態とし、そのギャップをどう見なすか、関係者との合意を得ておくことが肝心です。 MECEの概念とその活用法 MECE(Mutually Exclusive, Collectively Exhaustive)の概念については、有意義な切り口で切り分けることが大切ですが、乱用には注意が必要です。 データ分析の精度を高めるには? データ整理とデータ分析の違いや、分析の精度と説得力の関係については、明確な理解が求められます。例えば、データ分析がどのケースにより合致するかも考慮すべきです。現状から改善を目指すケース、あるいは未来に向けた戦略的なケース、それぞれに適したアプローチがあります。また、需要予測と異常検知といった異なるケースでの適用の違いも理解しておくと役立ちます。 ケースAの分析方法は? ケースAでは、例えばWEBサイトからの問い合わせデータや営業がSFAに入力した案件データを分析することが考えられます。現状の問い合わせ数に基づき、来期の目標やポテンシャルを過去のデータから算出するために変数分解を行います。 ケースBでの説得力あるストーリーの構築法 一方、ケースBでは、例えばグループウェアの切り替えに際し、役員を説得するためのデータ準備が求められます。説得力のあるストーリーを構築するために、現実的に入手可能なデータを調べることが重要となります。 具体的な結果を得るために これらのポイントを踏まえ、データ分析の取り組みを進めることで、より具体的で説得力のある結果を得ることができます。

アカウンティング入門

原点回帰!価値提供の軌跡

価値と対価の関係は何? ビジネスの基本は、価値を届け対価を得ることにあります。損益計算書は、提供した価値に対して得た売上と、価値を届けるためにかけた費用のバランスを把握するためのツールと言えるでしょう。 赤字の原因は何? もし赤字となる場合は、費用対効果のバランスが崩れていることを示しています。たとえ儲けが大きいことが望ましくても、コアバリューを損なわずに売上と費用のバランスを見直すためには、常に自社が提供したい価値が何であるかを振り返り、その原点に立ち返る必要があります。 提供価値はどう伝わる? 現状の売上の構成や、価値提供のためにかかっている費用を損益計算書をもとに見直すことが求められます。また、コアバリューを顧客体験として届けるためには、単に目標を達成するだけでなく、どのような価値を提供した結果として売上が立ったのか、その達成プロセスそのものが本質であり、事業の成長可能性に大きく影響すると考えます。 価値実現の進捗は? 今期の振り返り面談では、今後やりたい取り組みとしてこの点をお話する予定です。日々の業務では、単にKPIを達成することに注力するのではなく、その達成プロセスを通じて自社のコアバリューが体現されているかどうかに意識を向けます。もし体現が不足している場合は、KPIの設定がビジネスの本質からずれている可能性があるとして、定量目標が達成できなかった背景にある定性的要因をきちんとエスカレーションしなければなりません。 事業発展の鍵は? さらに、決算説明資料をもとに、今後どのように事業を発展させ、スケール化を進めることでコアバリューをより深く広く社会に届けることができるかをイメージし、それを社員登用試験でもお話したいと考えています。

データ・アナリティクス入門

小さな実験が拓く大きな未来

仮説はどう捉える? これまでの演習よりも多くのデータに触れる機会があったため、ただデータを見るだけではなく、まず「こういう仮説があるのではないか?」という視点を持って取り組むことが重要だと実感しました。また、仮説は一つに固執せず、他の可能性も網羅的に考えることで、思いつきに頼らないアプローチができると感じました。 PDF加工の落とし穴は? 一方で、PDFデータの加工には非常に頼りになる一面があるものの、誤認識により表の数字が間違うケースもあったため、過信せずに慎重に取り扱う必要があると痛感しました。 数字整理はどうする? ファネル分析とABテストは、どちらもすぐに実践できる手法として役立つと感じました。ファネル分析では、業務フローの数字が断片的にしか取得されていない現状を踏まえて、業務フローを整理し、必要なデータを集めてファネル化することが求められます。 仮説検証は進んでる? また、ABテストでは、うまくいっていない点に対して仮説を立て、比べるべき内容を明確にして、結果が確認できるデータを準備することが大切です。これらの手法を同時期にテストし、比較検証することで、より精度の高い分析が可能になると感じました。 分析の意義は何? さらに、なぜファネル分析やABテストが必要なのか、その意義を自分なりに言語化することも重要です。今週学んだ内容を整理し、データアナリティクスの重要性を前提として、具体的な提案にまとめる作業は大変有意義でした。 実践の意味は何? 最後に、実データに毎日触れてトライアンドエラーを重ねることが、さらなる改善点の発見につながると実感しました。これからも、日々の実践を通じて知見を深めていきたいと思います。

データ・アナリティクス入門

ABテストで見える進化の軌跡

どうプロセスを分解する? どこに問題があるかを明確にするため、プロセスを段階ごとに分解することが重要です。まず、問題発生箇所(Where)を複数の切り口で特定し、それぞれに対してABテストを実施することで仮説検証を行います。こうした手法は、効率的なコストパフォーマンスに寄与すると同時に、その後の具体的な取り組み(HOW)を事実に基づいて策定するために欠かせません。 どうデータを把握する? 私は製薬会社でMRを担当しており、担当エリアの製品が伸び悩んでいる状況をデータ分析によって明確に把握しました。売上や市場シェアの推移を詳細に検証することで、次のアクションに向けた具体的な問題点の特定が可能となりました。たとえ、担当者固有の感覚や直感に頼りがちな部分があっても、事実ベースの行動こそが仮説検証を丁寧に進める鍵であると実感しています。 何が効果的なABテスト? 具体的なABテストとしては、Aパターンではメディカル専門部署との同行訪問を実施し、Bパターンでは他施設での成功事例を共有する取り組みを行いました。一定期間のテストを経て、どちらのアプローチがより効果的であったかを定量的に評価し、その結果を基盤に最適な施策をエリア全体に展開する方向性を見出すことができました。 どう成長を促進する? 担当エリアの製品成長を促進するための手順は、まず現状把握として売上や市場シェアを分析し、成長が停滞している顧客層を見定めることから始まります。次に、影響力のあるキーパーソンや波及効果の大きい対象をリストアップした上で、仮説を設定しABテストを実施します。その後、テスト結果を定量的に比較し、最も効果が高い施策をエリア全体に適用し、次のアクションに反映させるという流れで進めています。

データ・アナリティクス入門

問題解決力が劇的に向上した理由

問題解決の新しいアプローチとは? 「What」「Where」「Why」「How」のステップについて、私はこれまで問題解決を漠然とした情報から考えていました。しかし、本講座でこの方法を学んだことで、漏れなく深く考えることができると感じ、印象に残りました。 問題解決には「あるべき姿」と「現状」のギャップを考えるアプローチが効果的です。私にはこの考え方があまり馴染みがなかったのですが、このように捉えると急に思考がスッと整理され、考えやすくなりました。これは非常に印象的でした。 新たに学んだ「MECE」の重要性 今週の学習では、新しいことが多く、一つとして「MECE」という言葉を初めて知りました。データの切り分け方の基本として非常に重要であり、生きたデータを整備する上で欠かせないと理解しました。実務での適用はまだこれからですが、曖昧さを排除するために「その他」を効果的に使うコツを学び、使える時が来たら活用していきたいと思います。 ギャップ分析をM&Aにどう活かす? 「あるべき姿」と「現状」のギャップを考えるアプローチを、私の仕事である事業承継型M&Aコンサルティングにどう生かせるか検討しています。例えば、買い手候補の選定においてシナジー効果を考慮しながら、売り手会社が目指す「ありたい姿」とのギャップを埋めるような選定を進めることが可能だと感じています。 データ分析での工夫はある? ロジックツリーやMECEについては、私の現職ではデータ分析で具体的に使用する場面が少ないと感じました。ただし、M&A後の支援においては、各事業ごとのデータを分析する際、上司から指示を受けてロジックツリーを活用した経験があります。今後も内部プロジェクトや会議で役立てたいと考えています。

「現状」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right