データ・アナリティクス入門

分析の「比較」効果で迷い解消!

分析の基本: 比較の重要性とは? 分析は比較であるというシンプルな理解に到達しました。以前は、数字から何を見出すべきか分からず複雑に考えていましたが、シンプルな視点からスタートすることの重要性を学びました。ただし、正しい比較対象がなければ、正確な分析はできません。このことに関連して、"要素をそろえる"という部分については、さらに実践的な学習や本コースでの深掘りを行いたいです。 効率的な分析設計のために必須なことは? また、グラフなどの見せ方を決定する以前に、分析する目的を設定すること、特に依頼された場合はその確認が大事だという点も理解しました。これにより、システムテストの品質評価やベンダー選定時など、具体的な場面で分析の質を向上させることができると考えています。 データ分析における注意点とは? これまでの経験では、依頼時に目的が曖昧な状態で受け取ることが多く、データの分析において何をすべきか判断がつかなくなり、結論を出せないこともありました。今後は、以下の3点を重視して取り組む予定です。まず、やみくもにデータを加工せず、目的の確認と仮説立てを確実に行うこと。次に、分析は比較を念頭に置くこと。そして、比較対象を分析の目的に沿って選定することです。 依頼者とのコミュニケーションで何が重要? 依頼者からは、目的の確認や必要な分析の方向性をしっかり聞き取ることが重要です。分析を始める前に目的を明確にするステップを必ず取り入れるべきだと感じました。その際、仮説をある程度考えると良いと思いました。また、仮説を立てる際には、比較対象が適切かどうかを依頼者と事前に合意することで、さらにスムーズに進められると感じています。

データ・アナリティクス入門

データで意思決定力を高める学び

データにコメントを加えるべき理由は? 対面で説明をしていたため、分析データ(数値やグラフ)にコメントを入れることができなかった部分がありました。しかし、その場にいない人や聞いていない人もいることを考えると、文章を加えることは重要です。 グラフ選びのポイントは? 誰が見てもわかりやすいデータを提供するために、大きな数値には%を、シェアを見るためには円グラフを、上がり下がりを示すには縦棒グラフを、差を示すには横棒グラフを適切に使い分けることが大切です。 効果的な意思決定のためには? 「意思決定を行う」ための分析には、比較対象を明確にし、その基準を設けることが重要です。基準が人によって異なると、決定が難しくなります。そのため、上司や同僚との確認やコミュニケーションをしっかりと行うことが必要です。 計画作りで考慮すべき点は? 分析に取り掛かる前には、ヒアリングや過去資料を確認し、仮説を立ててから分析を進めることが重要です。計画は大まかでなく、他人も理解しやすいように具体的に作成し、次に生かせる内容にすることを心掛けたいと思います。資料のページ数は増えてしまうかもしれませんが、「意思決定を行う」という目的を意識しながら簡潔にまとめる努力が必要です。 定量・定性分析の進め方は? 過去に事例がなく、基準や要素、軸なども整備されていない状態ではありますが、データを活用して定量・定性分析を進め、今後共通する基準を元に意思決定ができる土台を築いていく必要があります。中期的な目標としては、PDCAを回せるようにすることを掲げています。そして、短期的には基準の作成という要修正項目を念頭に置きながら分析を進めていきます。

クリティカルシンキング入門

イシュー中心で見えた問題解決の真髄

イシュー特定の重要性とは? 「イシュー:「今ここで、答えを出すべき“問い”」というテーマについて考え始める際に、まずイシューを特定することが重要です。常に「問い」を中心に考え、それを組織内で共有し、一貫して押さえ続けます。組織全体で協力して解決を図るためです。 何に注意して進めるべきか? 注意点として、いきなり打ち手に飛びつかないことが挙げられます。目先の課題形成や改善策を実行するだけでは、本質的な解決に至りません。課題の根本原因を抑えることが重要です。施策立案前には仮説を構築し、施策の効果検証を行います。また、上司や同僚、取引先との情報共有や報告も欠かせません。 イシューの共有がなぜ重要か? 自身のメイン業務である「仮説構築~施策立案~効果検証」において、イシューの特定やイシュー中心の施策進行、イシューの共有は必須スキルと感じています。本質的な課題を特定するスキルに加えて、組織全体に齟齬なく共有できるスキルを合わせることで、組織全体で正しく方向性を認識できるよう努めてまいります。 精度向上のために何をすべきか? 次に、現状分析の精度向上についてです。自社だけではなく、競合他社のデータも収集し分析することで精度を高めます。また、短期的にKPIの確認を行い、早期に問題を特定可能な体制を作ります。 フィードバックの活用法は? さらに、社内外からフィードバックをもらうことも大切です。内部ミーティングにおいては、マーケティングチームや他の関連部門と定期的な会議を開催し、見落としている可能性のあるイシューや課題を共有します。また、外部のコンサルタントへ意見を求め、独自の視点でイシューを評価してもらいます。

クリティカルシンキング入門

情報整理で業務効率を劇的に向上させる方法

情報整理の重要性をどう感じたか? 様々な切り口で情報を分解し、要素を整理することの重要性を改めて実感しました。MECE(Mutually Exclusive, Collectively Exhaustive)の考え方を用いることで、漏れなくダブりのない形でカテゴリを設定できるようになります。これにより、分析や提案の精度が向上することを実感しています。 効果的な提案のために何を考慮すべきか? 例えば、お客様の傾向を分析するときには、業種やニーズ、提案内容など多角的な視点で考えることが重要です。業種ごとにニーズが異なるので、それぞれに応じた提案をすることで、より効果的なアプローチが可能になります。 業務の効率化には何が必要か? また、自分の業務や時間の使い方についても、同様に多面的に考えることが求められます。こうした考え方を定着させることで、より効率的に業務を進めることができるようになります。具体的なフローを考え、その進め方についても見直すことで、業務の効率化が図れることを感じました。 案件成功へのパターンは? さらには、案件の進め方についても同じアプローチが有効です。異なるパターンを検討し、それぞれのパターンが成功する可能性を考えることで、「これなら」という勝ち筋を見つけることができます。こうしたプロセスを経ることで、実際の提案がより具体的で説得力のあるものとなり、お客様に刺さる提案ができるようになります。 MECE活用の意義とは? このように、MECEの考え方を取り入れ、情報を整理し分析することの意義を再確認できました。今後もこの手法を活用して、より効果的な業務遂行を目指していきたいと思います。

データ・アナリティクス入門

仮説で切り拓く未来の発見

仮説の意義は何? ビジネスにおける仮説とは、ある論点に対する仮の答えを意味します。重要なのは、正しい答えに決め打ちせず、複数の仮説を挙げることで網羅性を確保することです。仮説には「結論の仮説」と「問題解決の仮説」があり、時間軸によって過去の検証と未来の予測で内容が変わります。 仮説をどう検証する? 問題解決の仮説は、問題解決のプロセスに沿って、WHATからWHERE、WHY、HOWへと各要素に仮説を立てるものです。このアプローチにより、検証マインドが向上し、問題意識や改善点への気づきが促進されるという利点があります。 仮説は広く捉える? ゲイルを通して学んだのは、正しい答えに近づけようと意識するあまり、仮説の範囲が狭くなってしまう可能性があるという点です。思いつくままに仮説を列挙してみることで、仮説の網羅性や全体像が明らかになることを実感しました。また、数値を用いた費用対効果の分析手法も学ぶことができ、有用な気づきとなりました。 売上の原因を探る? 具体的な例として、売上分析においては、単価が低いことやコストが上回っていること、あるいは季節性の変動によって患者数が左右されるなど、さまざまな仮説が考えられます。これらの仮説は、結論の仮説として売上未達の要因を示すものと、問題解決のプロセスとして原因究明のための仮説として整理することが求められます。 仮説報告はどう? 毎週の売上数値進捗報告では、複数の仮説を設定し、その検証結果と合わせて報告することで、仮説立案のプロセスに説得力を持たせることが大切だと感じました。月末には、立てた仮説を通して得た気づきを言語化し、次のステップに活かす姿勢が必要です。

クリティカルシンキング入門

実践力を磨く!総合演習と思考法の活用術

総合演習の意義は? 総合演習の授業では、これまで学んだフレームワークやテクニックを活用することができました。この総合演習は非常に良い練習問題であり、こうしたケーススタディを繰り返し行うことで、実践的な力を身につけられるという期待が持てました。 講座の成果は? クリティカルシンキング講座を受講したことで、思考の基盤をしっかりと強化し、業務にその考え方を取り入れることができました。具体的には、相手の立場や状況を考慮しながら資料を作成したり、情報を正確かつ伝わりやすくするための工夫を行いました。この講座を受講した後、周囲から「わかりやすい」「洗練された」と評価されることが増え、自身の成長を感じています。 学びはどう生かす? 総合演習やクリティカルシンキング講座で学んだことが実務に活かされ、成長を実感できたことは素晴らしい成果だと感じています。今後は、具体例を用いてどのように学んだ内容を日常で活用しているのかを詳しく説明することで、学習の効果をより明確にしたいと考えています。 イベントは振り返る? また、担当したイベントについても振り返りを行い、次回に向けた申し送りを検討する予定です。これと同時に、今年の総括と来年度に向けた実行計画の立案、営業場面での顧客の本質的な課題を捉えた提案活動にも取り組んでいきたいと考えています。 今後の実行計画は? 解決に向けた道筋を立てる際には、ピラミッドストラクチャーやマインドマップ、MECEなどのフレームワークを活用し、まずは目的を確認することから始めたいと思います。これまでの講義を再度振り返り、高いモチベーションを維持しながら次の学習計画を練るつもりです。

戦略思考入門

惰性を捨てる!新視点で挑む戦略構築

判断基準はどう考える? 捨てること、そして捨てるための明確な判断基準を決めることは非常に難しい課題です。特に、慣れ親しんだことは惰性で続けがちで、昔からのやり方だからと続けてしまうことが多いのです。しかし、環境の変化はむしろ捨てるための良い機会かもしれません。「餅は餅屋」という言葉があるように、選択と集中により効率を向上させることができます。新卒やキャリア採用者の新しい視点はこれらの変化に対する一つの鍵となるでしょう。 捨てる業務、見極める? 全社や各部門では、ROAの向上が命題となっており、その中で「何を捨てるか」を意識することが重要な要素のひとつです。限られたリソースで最も効果的に収益を上げるため、次の点を検討します。まず、従来のビジネスが本当に収益性向上に寄与しているかを見直し、たとえボリュームを確保できても収益に貢献しない場合は削減や廃止を検討します。また、外部委託可能な業務についても費用対効果を詳しく検証し、アウトソースすることを考えます。そして、日常業務の“当たり前”とされる手順や慣習を再評価することが求められます。 戦略はどう組み立てる? 来週からの出張では、この「捨てること」を基にした戦略づくりを進めます。海外拠点での収益性向上のために、捨てるべきものを特定し、最適なポートフォリオの構築に挑戦してみたいです。日常業務で当たり前だと思われているビジネスが本当に収益に貢献しているか、またはコストがかかっていないかを精査します。さらに、本当に「捨てて良いか」を多角的に検証します。そして、迷ったときは基本方針に立ち戻ることや、キャリア採用者からの意見を積極的に取り入れることが重要であると考えています。

データ・アナリティクス入門

発見!数字が紡ぐ成長物語

現状と目標はどう? データ分析の基本は、まず現状を正確に把握し、理想の状態を明確にすることにあります。現状を理解した上で目標を設定することで、実現可能な改善策の検討が可能となり、より効果的な意思決定につながります。 比較で見えるものは? また、分析作業においては、異なる時期やグループ間での比較が鍵となります。比較を行うことで、問題点や改善策が明確になり、データから得られる示唆が深まると感じました。 切り口の変化に気づく? さらに、データの分解や分類、そして視点の切り替えを適切に行うことが分析の精度向上に直結します。目的に合わせた切り口でデータを見ることで、従来は見落としがちな傾向や改善点が浮かび上がり、最終的に意思決定を行う上で必要な情報が明確になります。 グラフで何が分かる? 実務での分析において、ヒストグラムや散布図を取り入れる試みを行いました。これまで平均値や中央値といった基本的な数値だけで評価をしていたため、賃貸物件の募集データにおけるばらつきや分布の傾向を見逃していました。しかし、ヒストグラムや散布図を作成することで、特定の物件の賃料が極端に高いまたは低いケースが存在していることに気づくことができ、単純な平均値だけでは把握できなかった重要な情報を得ることができました。 次は何に注目する? 今後は、データ収集時に注目すべきポイントや重要な変数を明確にし、分析の目的に合ったデータを選定することを徹底します。また、定期的にヒストグラムや散布図を作成してデータのばらつきや傾向を常時確認し、分析結果を関係者に報告してフィードバックを受けることで、さらなる改善を進めていくつもりです。

クリティカルシンキング入門

視点を広げる学びの旅へ

偏りを克服するためには? 考えやすいことや自分が考えたいことに偏りがちな点は、多くの人が感じる悩みです。この偏りを克服するためには、意識して自分自身をクリティカルにチェックすることが求められます。また、他者とディスカッションを重ねることで、自分では気づけなかった視点に気づいたり、自分の考えを確認したりすることができます。これらは、成長するための重要な営みです。 多面的な視点を持つには? 偏りの排除には、以下のような方法があります。まず、誰の視点で見るか、さらに上位の立場から見る視座、横から見る視野の3つの視点を持つことが重要です。また、物事を部分集合としてとらえ、ロジックツリーを用いて分解し考えることも効果的です。具体的なものを抽象化し、共通する抽象概念から他の具体的な事例を検討することも有益です。 プロジェクト計画の改善策は? プロジェクト計画のレビューでは、抜け漏れや考慮漏れを確認し、直面している課題に対して、現在の解決策以外により良い方法がないかを考えることが大切です。さらに、上司や役員にプレゼンを行う際には、資料に説得力を持たせるためにストーリーを工夫することが求められます。また、新規事業の調査や事業計画の策定においても検討を重ねることが必要です。 視点を変えると成果が変わる? まず自分の視点で考えてみて、その後に他の視点、視座、視野で考え直すプロセスを組み合わせると、新たな洞察が得られることがあります。そして、ロジックツリーを用いて抜け漏れがないかを整理し、ストーリーを考えた後には、そのプレゼン資料が上司の視座からどのように見えるかを意識することが成果を高めるポイントとなります。

クリティカルシンキング入門

論理的思考でビジネス成功の近道

論理的思考とは何か? ビジネスにおける「論理的思考」とは、相手に対してわかりやすく、簡潔に伝えることを指します。どんなに素晴らしい提案でも、相手に伝わらなければ意味がありません。この点を再確認することができました。 どう制約を超えるのか? 人間は無意識のうちに考えを制約しています。これは自覚しにくいものですが、「3つの視」などの考え方を持ち、それを活用していくことが重要です。目の前の問題に対して正しいアプローチで取り組むことが大事であり、この姿勢が一見遠回りに見えたとしても、それが実は最速の方法であることも学びました。 商談で「3つの視」を活用? 顧客との商談や提案においては、「3つの視」で顧客を理解することが、彼らの課題を正しく把握する助けになります。提案内容を検討する際には、「目的は何か」「思考の癖はないか」「問い続けること」を繰り返し考えることで、本質的な提案へとつなげることができます。そして、相手に伝える際には、内容を理解してもらい、行動を引き出すことができるかを考慮しながら資料を作成することが大切です。 クリティカル・シンキングをどう実践? クリティカル・シンキングの3つの姿勢を常に可視化することも重要です。PCやタスク管理ツールなど、常に目に入る場所に掲示することで、自分がクリティカル・シンキングを実践できているかを振り返る環境を整えます。 「3つの視」を書き出す効果は? また、「3つの視」を紙に書き出すことも有効です。頭の中で考えるのではなく、常に紙とペンを用意して、整理できる環境を整えます。物事を考えるときに「3つの視」で書き出すことを習慣づけることが、おすすめの方法です。

データ・アナリティクス入門

分析を活かす!仮説とフレームワークの実践術

仮説はどう見える? 仮説を明確にしてから分析を進めることが重要です。これにより、適切なデータの取得が可能となり、比較したい項目に対して最適なビジュアル化を行うことができます。分析ではいくつかのフレームワークを利用することで、効率的に進めることができます。 成長促進は何が必要? 勤務先の成長を促進するために、どの領域にリソースを投入するべきかを判断する際には、分析結果をもとに経営の意思決定を支援したいです。この際、従来の定性的なニーズ内容に加え、定量的データの分析も考慮に入れます。また、複数のテーマを比較し、最適な選択ができるようなアウトプットを心掛けます。学んだ内容を資料に反映させ、周囲に影響を与えることで、他社のスキル向上へと繋げたいです。 図表作成の第一歩は? Excelで図表を作成するスキルを身につけるためには、苦手意識を払拭し、まずは行動に移すことが重要です。時間がかかっても取り組み、教本などの資料を購入し手元に置きましょう。 仮説構築のコツは? 仮説構築力を養うためには、網羅性のある複数の仮説を立てることが重要です。ロジックツリーの利用や、ブレインストーミングを行うことで、より完結な仮説を構築できます。 実践力はどう磨く? フレームワークに関する知識を増やし、実践力を付けるためには、積極的に情報を交換し、見つけた事例を他人に教えるなどコミュニケーションを大切にします。困った時にはフレームワークを検索する癖をつけ、自身の業務に応用してみましょう。 記録管理はどう活用? これらの知識や成果を一か所に記録する場所を設け、振り返りや忘れ防止に活用することが効果的です。

データ・アナリティクス入門

データ分析で経営に革命を起こす方法

標準偏差をどう理解したか? データを分析する際に使用する数値(平均値、中央値、標準偏差)について、特に標準偏差については名前を聞いたことがあってもよく理解していなかったが、今回の学習でよく理解できた。2SDルールを使うと、大体の平均値が分かることも印象的だった。また幾何平均についても学べてよかった。恥ずかしながら、これまで売上の成長率をデータを目で見た大体の数で算出していたため、売上予測を立てるのに幾何平均が大いに役立つと実感した。調べたところ、エクセルでは標準偏差はSTDEV.P関数、幾何平均はGEOMEAN関数を使うと算出できるようだ。 より的確な売上予測を立てるには? まず、目標設定のために売上予測を立てること。また、各製品のポテンシャル予測にも活用できそうだ。さらに、自社サイト会員数の分布を散布図を使って確認することができると思った。ニッチな業界のためこれまで分布を確認したことがなかったが、年齢や勤務地等でデータを分析してみると面白そうだ。 各製品の成長率を比較する方法は? 次に、扱う製品と市場の性質上、月毎の売上に大きなばらつきがあるため、年ごとにまとめるのでは効果的な数字が得られないと考える。そのため、各製品の月毎の売上を、過去の3-4年と比較することで成長率や今後の伸び率が確認できそうだ。また、例えば月1以上ログインしている会員の年齢を5年くらいごとに区切ってヒストグラムに示す、あるいは企画ごとに図式化することで、どの企画がどの年代に刺さっているのかが分かりそうだ。 有用なデータ分析を期待するには? これらの手法を取り入れることで、より具体的で有用なデータ分析ができると期待している。

「効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right