データ・アナリティクス入門

数字を紡ぐ、現場からのヒント

どう分析すれば良い? 「やみくもに分析しない」という言葉を目にし、データ分析の奥深さを再認識しました。現在、チームで検討中の施策に対し、まずは営業担当へのインタビューを実施し、そこで多くの意見が寄せられた内容については、全体を対象にアンケートを行う計画です。 数字の根拠は何故? 数字の根拠をもとにストーリーを作り上げる手法は、相手に響く説得力を持たせる上で非常に重要であると改めて感じました。この考えを念頭に置きながら、実務におけるデータ分析のアプローチをさらに熟考する機会となりました。Week6で総復習を予定していた中で、新たな気づきを得ることができたのは大きな収穫でした。 実務データの秘訣? また、AIコーチングからは、実務における定性データ(インタビューやアンケート)と定量データとの整合性や、数字の根拠から効果的なストーリーを作るための仮説検証のプロセスについての問いをいただきました。まずは、アンケートを通じて定量データを効率よく収集できる仕組み作りに取り組むとともに、過去から蓄積している定量データの中から、今回の営業担当へのアンケートに活用できるものがないかを洗い出してみようと思います。

クリティカルシンキング入門

問いを共有して成果を引き出す秘訣

正しい問いの立て方は? 問題に取り組む際に、初めに正しい問いを立てないと、間違った問いに対する施策では成果が得られません。会議ではその日の問いを皆で共有し、それを常に忘れずに問いに立ち返ることの重要性を痛感しました。組織でこのような徹底をしないと、同床異夢になってしまうことがよく分かりました。例えば、売上をどのように構成要素に分けるかといったトレーニングは非常に勉強になりました。 業績比較で何が見える? 業績推移を2000年と2024年で売上や単価、件数、社員数、求人数、求人決定数、担当者毎のスカウト数や返信率などを比較することで、多くのことが明確になり、予測可能なことが増加すると考えます。こうした分析により、現状の科学的特定が容易になり、自社の業績に外部環境がどのように影響しているかを理解しやすくなります。 会議でどう問いを活かす? 日常のリーダー会でも、優れた問いを皆で共有し、会議が終わるまでその意識を保ち続けることが肝要です。打ち合わせ記録にもアジェンダの他に問いを共有すると効果的です。年末年始には過去5年の業績推移を分析し、何が何と相関があるのかを明らかにすることが可能だと思います。

データ・アナリティクス入門

仮説の力で未来を切り拓く

仮説の役割は? 仮説とは、ある論点に対する仮の答えであり、目的に応じて「結論の仮説」と「問題解決の仮説」に分類されます。これらは、過去、現在、未来という時間軸によってその内容が変化するため、状況に応じた検討が求められます。仮説を持つことで、個々の仕事における検証能力が高まり、説得力が増すとともにビジネスのスピードや行動の精度も向上します。 会員減少の理由は? たとえば、コミュニティの会員数が減少傾向にある現象について検討する際、フレームワークに沿った分析を行うことで、何が問題なのか、どこに課題があるのか、なぜその問題が生じているのか、さらにはどのように対応すべきかといった具体的な課題が明確になり、改善策も見えてくる可能性があります。このような一連のプロセスは、非常に難しい課題ですが、正確な状況把握と議論の進展に寄与します。 活用法はどう変わる? これまで、仮説を立て検証する際に、フレームワークを十分に活用せず、目の前の事象に対して漠然と対処していた部分がありました。今後は、4Pや3Cなどのフレームワークを効果的に用い、より具体的な仮説を立て検証することが求められると感じています。

アカウンティング入門

投資も採用も数字で見極める

貸借対照表のポイントは? 貸借対照表(B/S)の基本構造を学び、負債が1年以内の支払いとなる「流動負債」と、1年以上にわたる支払いが見込まれる「固定負債」に分けられることを理解しました。また、店舗のコンセプトである「贅沢感」と「非日常感」を演出するための家具や内装に関して、新品にこだわるのではなくリサイクル品の活用も検討すべきだと気づきました。これまで新品の家具や内装を前提に考えていたため、どこまでが投資となり、どの部分で妥協できるかを見極める必要性を感じています。今後は、掲げた目的と目標を踏まえ、投資に見合った利益をしっかりと検討していきたいと思います。 求人手法の選び方は? また、12月末までに1部署で数名の採用を検討していることから、求人媒体の選定が重要な課題となっています。掲載型、スカウト型、または他のダイレクトリクルーティング方式など、各手法の特徴を比較し、費用面では掲載期間ごとの固定料金制と採用が決定した際に発生する成功報酬型の違いを含め検討する必要があります。過去の採用実績や今後の利益見込みを踏まえ、自社の数字をシミュレーションしながら、最適な採用手法を見つけ出したいと考えています。

クリティカルシンキング入門

視覚で魅せる!伝わる情報術

視覚表現はどう伝える? 自分の伝えたいことを相手にしっかり受け取ってもらうために、視覚的な表現が重要だと学びました。単に情報を視覚化するだけではなく、フォントや色彩が与える印象、またグラフの見やすさにも細心の注意を払う必要があると実感しました。 重要点は何だろう? 何を伝えたいのか、どの情報が重要なのかを整理し、視覚的に表現することが大切です。さらに、自分で作成したグラフが適切で情報に漏れがないか、また強調が過剰になっていないかを確認することも欠かせないと考えています。 スライド作りの工夫は? これらの学びは、プレゼンテーションや資料作成の際に意識して活かしていきたいと思います。スライド作成の際には、情報の順番が不自然でないか、パッと見た時に内容が把握しやすいかどうかを常にチェックし、過去に作成したスライドを見返して改善点を探る習慣を身につけることが重要だと感じました。 理解しやすい文章は? また、文章作成においては、要点がしっかり伝わり、読んでもらいやすい文章を心がけることが大切だと学びました。今後、このポイントを意識してより効果的なコミュニケーションを図っていきたいと思います。

リーダーシップ・キャリアビジョン入門

目標達成のカギは「前提の共有」

学びを深めるためには? 意欲を伸ばす、目標を一致させる、改善を促す、といった具体的な場面を考えることができたのは、非常に学びになりました。 過去と現在の環境の違いは? また、伝える相手について、過去の環境と現在の環境の違いからどのようなことが起きるかを考えることも重要です。指示を伝える際や報告を行う際に、これらのポイントを活用したいと思います。 目標を一致させるには? 前提や目標を一致させることで、目標に対して素早く行動できるようになり、意思決定も迅速に行えるようにしたいです。また、環境に違いがある場合、そのズレが生じないように共有することも大切です。 効果的に伝えるためには? 前提や目標を一致させるためには、目標から逆算して必要なことを言葉にして伝えること、また伝えてもらうことで一致を確認することが重要です。 ズレを防ぐための行動は? さらに、ズレが起こらないようにするための行動としては、相手の経験や能力、意欲を確認し、現在の課題について必要な要素を一つ一つ考えることが必要です。確認が必要な点については、具体的に言葉で伝え、相手にも言葉にして伝えてもらうことが大切です。

データ・アナリティクス入門

問題を正しく捉える力を鍛える学び

問題特定の重要性とは? 問題を特定し、何が問題なのかを正しく把握することが重要です。問題を正しく捉えることで、その問題を構成する要素を分解し、それぞれ丁寧に実施することの重要性を理解しました。この基礎を常に意識し、自然にこの作業ができるように習慣化したいと感じました。 BPR業務で本質的課題を解決するには? BPR業務推進において解決しようとしている課題についても、本質的な問題を改めて可視化し、問題を正しく捉えるための作業ステップを築くことが必要です。本質的な問題を捉える作業を丁寧に行うことを習慣化することで、現在は目の前にある課題を解決する過程で本質的な問題にたどり着くことが多いですが、目の前の課題について問題が何かを確認する作業ステップを加えることを考えています。 ロジックツリーとMECEで思考を整理する ロジックツリーを作成し、MECEを意識して確認作業を行うステップを加えていきます。まずは苦手意識のあるロジックツリー作りにトライし、回数を重ねてその質を上げたいと思います。過去に解決済みの課題についてもロジックツリー化してみることで、自分の思考の癖も確認していきたいと考えています。

データ・アナリティクス入門

営業成績アップのカギは仮説立てにあり!

仮説を立てる重要性とは? 原因を見つけるためには、仮説を立ててデータを収集することが重要だとWeek4で学びました。仮説は一つに絞らず、複数立ててから絞り込むことが大切であり、仮説同士に網羅性を持たせる必要がある点に納得しました。しかし、網羅性や複数の仮説を考え過ぎると時間がかかるため、バランスを考えることが重要です。 営業成績向上の仮説は? 例えば、自分の営業成績が悪いときに成績を上げることを目的とした場合、様々なポイントで仮説を立てられます。行動数が足りない、提案の質が悪い、ニーズが大きいクライアントに当たっていないなど、様々な仮説が考えられます。網羅性の確認には他のフレームワークを活用することが有効です。 データと仮説の精度を高める方法 具体的には、まず仮説を立てるために自分の営業プロセスを分解し、その過程でフレームワークを調べたり、上長とディスカッションを行ったりして網羅性を高めます。また、過去の営業成績からデータを抽出し、仮説の精度を上げるための材料にします。もし不可欠なデータが不足している場合は、将来的にはデータの取得が可能となるように社内で提案することも考えられます。

アカウンティング入門

P/Lが明かす企業成長の秘密

P/Lで儲けはどう見える? P/Lの構成から、企業の儲けの構造がどのように形成されるかを理解できました。事業コンセプトや経営ポリシーがP/L上に表れる点も興味深いと感じました。客回転数や客単価、材料費と売上総利益、販管費など、それぞれの項目にどのように影響があるのかがよく示されています。 講座の魅力は何? この講座は、アカウンティングの内容ながらマーケティングのような切り口も取り入れており、非常に刺激的でした。 経営分析はどう進む? 今後、企業の経営分析にこの知識を活用していきたいと考えています。業界内での相対比較に着目し、同じ市場内の自社、パートナー企業、クライアント企業、競合企業といった立場で比較しやすい指標を検討する予定です。また、過去3年から5年の推移を分析することで、変化点やその要因を把握できればと考えています。 比較で差は何? 具体的には、まず関心のある業界に焦点を当て、代表的な3社のP/Lを比較して各社の儲けの構造の違いを読み取ります。その後、決算報告資料を参照して各社の主張を確認し、さらに関連するメディアの記事を通じて有識者の評価なども調査していく予定です。

クリティカルシンキング入門

会議を操る!課題克服への挑戦

会議運営の難しさは? 実務で陥りがちな「イシュー」を常に意識し続ける難しさを改めて実感しました。ファシリテーターとして会議を進行する際、画面やホワイトボードに議題を明記しておくよう努めています。しかし、途中参加のメンバーがいたり、自由な議論が行われる場合、議題に沿った軌道修正が難しくなるという課題も感じています。こうした状況を踏まえ、全体の効率を高めるために、自ら率先して会議の方向性を整える必要があると感じています。 考え方の転換は? また、「なんとなく考える」ことを避ける大切さも強く意識しています。過去に、漠然としたアイデアで作成したプレゼン資料では、完成までに時間を要した経験があります。そこで、初めからしっかりと考え、骨子を組み立てることの重要性を学びました。 会議時間の管理は? さらに、会議を主催する場合、議論が散漫になりがちで時間管理が難しいこともあります。そこで、事前に伝わりやすい英語表現に訳し、関係者と確認しておくことで、会議開始時点で全員の認識を合わせるようにしています。会議中も常に議題が画面上部に表示され、議論が逸れた際には速やかに軌道修正を行うよう心掛けています。

データ・アナリティクス入門

仮説を超えて広がる学びの可能性

仮説はどう考える? 仮説を立てる際には、ただ闇雲に考えを巡らせるのではなく、3Cや4Pといったフレームワークを有効に活用することを学びました。その上で、仮説は複数立てることが重要であると感じています。 本当に必要なデータは? また、データ収集に関しては、まず既存のデータを検討し、不足している情報がある場合に新たなデータを集める必要があると理解しました。立てた仮説に都合の良いデータだけを選ぶと説得力が欠けるため、注意深くバランスをとることが求められます。 問題の原因は何か? さらに、業務における障害分析では、問題の解決に向けた仮説の立案が主な目的となります。現状で行っている真因分析とも連動し、What、Where、Why、Howのプロセスを意識して問題を深く掘り下げることが必要だと感じました。 実践で学ぶヒントは? 実際、日々発生する障害や事象について原因を深掘りし、複数の仮説を検討する癖をつけることで、経験を積んでいきたいと思います。ただし、データ収集の方法には工夫が必要であり、過去の事例をカテゴリー分けするなど、データを整理・加工する手法の改善が求められると考えています。

データ・アナリティクス入門

仮説で切り拓く受講生の挑戦記

分析って何を探す? 分析とは、物事を比較しながら目的意識を明確にし、仮説を立てつつ進めるプロセスです。分析を効果的に進めるためには、「What(何を)」「Where(どこで)」「Why(なぜ)」「How(どのように)」という手順に沿うと良い成果が得られる可能性があります。 フレームをどう活かす? 特に「Why」の段階では、ケースに応じて既存のフレームワークを活用することで、より深い洞察が得られるでしょう。また、分析結果をグラフなどで見える化することにより、その説得力は一層増します。 障害の本質は何? 障害分析においては、過去の事例を参考にしながら、現時点では見えていない問題点を抽出することが重要です。これまでは既存の数字を並べるだけで手探りだった部分も、今後は「何を明らかにするか」という目的意識を持って進めたいと考えています。 データ活用はどう? まずは、障害発生件数の減少を目指すために、どのようなデータが必要かを検討し、過去の事例から現在の課題を洗い出すことから始めます。その上で、得られた情報をもとに自分なりの仮説を立て、分析作業を着実に進めていきたいと思います。

「過去」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right