データ・アナリティクス入門

フレームワークで広がる思考の旅

フレームワークで何を学んだ? 3C分析や4P分析といったフレームワークを活用しながら、視点を切り替えて仮説を立てる手法を学びました。これにより、論理的に整理された思考の進め方が身につき、より多角的な分析が可能になると感じました。 複数仮説はどう考える? また、仮説を立てる際には、複数の仮説を同時に考えることや、網羅性を持たせることの重要性を再認識しました。一つの仮説に固執せず、様々な可能性を検討することで、より精度の高い分析が行えると実感しました。 データ収集はどう進める? さらに、データ収集に関しては、既存のデータを活用するパターンと新たにデータを取得するパターンがあることを学びました。新しい情報を得るために必ずしも新たなデータの取得が必要なわけではなく、まずは既存のデータを精査し、そこから仮説を考えることも十分に有効であると理解できました。 次はどう活かす? 以上の学びを踏まえ、フレームワークの理解をさらに深め、網羅性をもって複数の仮説を立てられるように努めるとともに、まずは既存データの見直しから取り組んでいきたいと考えています。

クリティカルシンキング入門

学びを深める振り返りの旅

文章構成はなぜ重要? 文章を書く際には、主語と述語を明確にし、文章全体を俯瞰して構造を整えることが重要です。これにより、論理的かつ順序立てた表現が可能になります。ただし、自分の文章を見直すのは難しく、相手の視点を忘れがちなので、注意を払う必要があります。 書く力はどう鍛える? 言語化することで思考を整理し、概念の理解を深められることに加え、文章を書く習慣を持つことで、その力をさらに鍛えることができます。特に、週に1回400字を目安に文章を作成する習慣を持つと、書く力だけでなく思考力も向上します。 効果的なコミュニケーションはどう実現する? 業務においては、チームや上司への報告や外部の方へのコミュニケーションでも、理由をわかりやすく明確に伝えることが肝心です。メールや書類を送付する前には、内容に間違いがないか、理由が明瞭に書かれているかを確認する習慣をつけます。また、会議ではピラミッドストラクチャーを意識して情報を整理し、わかりやすくまとめるとよいでしょう。このようにして、言語化のプロセスを通じて、より効果的なコミュニケーションを実現します。

クリティカルシンキング入門

目的を捉える―聞く力の新発見

目的理解の必要は? これまで、課題に対してただ提案することだけを重視していましたが、検討に入る前に目的をしっかりと理解することの重要性に気づきました。目的を把握し、整理しておくことで、検討の過程で情報の漏れや重複、また答えが目的から逸れてしまうことを防げると感じています。 聞く力に意味は? また、「聞く力」の大切さも改めて認識しました。質問の意図を的確に理解し、他者の意見や提案に耳を傾ける姿勢を持つことが、より良い成果につながると実感しています。 案内への活用は? この学びを、社員全員に向けた案内文の作成に活かしたいと考えています。個々の事情や背景が異なる中で、目的と伝えたい内容を明確にし、様々な角度から検討を行うことが納得感のある案内につながると思います。また、上司や同僚と相談する際も、最初に目的をしっかり伝えてから意見を求め、決定後もフラットな視点で見直すことが重要だと考えています。 実生活でどう改善? 今後、日常生活の中でこの学びをどのように意識し、実際に活かしていくかを試行しながら、さらなる改善につなげていきたいと思います。

戦略思考入門

差別化戦略で広がる可能性

差別化の出発点は何? 差別化を図る際は、まず「競合他社の幅広さ」や「ターゲットとなる顧客」といった前提条件を明確にすることの重要性を再認識しました。大きな差別化戦略であるコストリーダーシップを必ずしも実践する必要はないかもしれませんが、差別化や集中戦略は自社の戦略に十分応用できると感じています。 業界戦略はどう考える? 自身の業界に当てはめると、3つの戦略やVRIO分析といった枠組みは、現在の自分の立場よりも会社全体の戦略部や経営層に近い組織で判断されている印象です。単に方向性を示されるだけでなく、その判断に至る分析結果が説明されることで、より納得しやすくなります。なお、組織単位でVRIO分析を行った場合、その組織の強みは見えても、会社全体の最適な解決策とはならない点には注意が必要です。 どのような工夫がある? また、差別化を考える際に、先に答えを思い浮かべ、その答えを補強するために優位な競合や顧客情報を並べる傾向があります。経験則から出る直感自体は否定しませんが、視野が狭くならないよう、どのように工夫しているのかを考える必要を感じました。

データ・アナリティクス入門

柔軟な仮説が未来を拓く

初期仮説の危険性は? 仮説は初めから決めつけず、幅広い視点で持つことが大切です。あらかじめ仮説を立て、それに基づいて検証するため、もし初期の仮説に誤りがあれば、その後の工程にも大きな影響が出る可能性があります。 計画的データ収集は? また、仮説を検証する際には、必要なデータを計画的に収集することが求められます。必ずしも全ての情報が揃っているとは限らないため、誰にどのように情報を収集するか、目的に沿って進める必要があります。 売上データで何発見? 日々の業務で売上データを見る中で、発生した事象に対してまずは幅広く仮説を出すことが有効だと感じました。これまで漠然とした感覚で仮説の検証に取り組んでいたため、今後はより意識的に取り組むことが必要だと思います。 周囲の意見は頼も? 仮説を立てる際は、自分一人で考えるのではなく、周囲のメンバーからの意見も取り入れ、網羅性を高めるよう努めます。過去の経験や先入観をなるべく排除し、フラットな視点で物事を俯瞰することを心がけるとともに、仮説検証の目的を踏まえて最適なデータ収集方法を選択していきます。

データ・アナリティクス入門

変化を捉え、採用戦略の新しい視点を獲得

「分析は比較なり」とは? 「分析は比較なり」という言葉が強く印象に残りました。これまで、分析を行う際にはひとつの情報やデータから何かを導き出そうとすることに注力しがちでした。しかし、適切な対象と比較を行うことが重要であることに改めて気づかされました。データ加工が目的化し、肝心な分析がおろそかにならないよう、「何のための分析なのか」を明確にすることが大切だと学びました。 採用戦略にデータ分析をどう活かす? また、この知見は顧客企業の採用戦略を考える際にも活用できると感じました。顧客が抱える採用課題を解決するためには、現状データ(求職者の動向や志向性など)をもとにボトルネックを分析する必要があります。目標と現状の差を正確に把握するために、今回の学びを活かしてデータ分析を行いたいです。 自分なりの仮説が鍵? さらに、顧客の課題に対して自分なりの仮説を立てること、分析の目的を明確にすることを意識していきたいです。採用市場は日々変化していますが、その変化を「仕方がないこと」と捉えるのではなく、変化の原因や市場の動きを常に考えていくことが重要です。

データ・アナリティクス入門

小さな疑問から大きな発見へ

何故課題意識は必要? 分析の目的や課題意識を明確にすることで、日常の業務だけでなく、普段目にする分析データについても「なぜ?」と考える習慣が身につきました。例えば、ニュース記事で医師不足が取り上げられる場合、その背後にある分析の意図や解決すべき課題を自分なりに考察するきっかけとなりました。 施策評価はどう? また、業務で複数の施策を企画・実行する中で、効果を評価するための分析が重要だと感じています。中長期的な戦略の実行に際し、連続性のある施策を実施するためにも、小さな施策のブラッシュアップを繰り返す必要があると考えています。たとえば、アプリへのログインプロセスを細かく分解し、特に初回ログイン率の向上に向けた分析を進めています。 情報取得は万全? さらに、戦略立案の段階から必要な情報やデータが適切に取得できているかを精査し、取得できていないデータにはタグ付けなどの対応を実施して、常に分析が可能な状態を作り上げています。同じ条件で定期的にログの確認やレポート作成を行う仕組みを整備することで、継続的な定点観測が可能になりました。

クリティカルシンキング入門

問題の本質を探る思考の鍛錬

本当の課題は何? 顕在化している問題をそのままイシューとして設定するのではなく、なぜそれらが生じているのか、本当の問題は何かを分析することが重要だと感じました。なぜなら、顕在化した問題に対して対症療法的なアクションを取っても、根本的な解決にはならないことが多いからです。しかし、本質的な課題を見つけるのは今の私にとって非常に困難であるため、思考を鍛える練習が必要とも感じています。 仕事のバランスはどう? デイリー業務と企画業務のバランスを考える際や、残業時間削減に向けた対策の検討など、さまざまな場面でこのアプローチは役に立つと思います。顕在化した問題に隠れている潜在的な問題を深く分析し、正しい対策を探っていきたいです。 事実の関連はどう見る? 見えている情報だけでイシューを設定するのではなく、なぜその事象が発生しているのかを考えるようにします。また、1つの事実から安易に結論を出すのではなく、複数の事実を関連づけ、問題の本質を考える癖をつけたいと思っています。情報を分析する際は、データを加工し、複数の視点からの検討を行うことも重要です。

データ・アナリティクス入門

考える力を広げる3C4P活用術

フレームワークの効果は? ゼロベースで仮説を立てるより、フレームワークを用いることで視点が広がり、仮説の網羅性が向上すると感じました。これまでは感覚に頼ってひとつの答えに固執することが多く、思考が止まる場面もありました。しかし、実践演習では3C4Pを活用することで、問題に対して一歩踏み込んだ考察ができるようになりました。 データ収集の意義は? また、仮説検証においては、自分に都合の良いデータだけでなく、比較のための情報を収集する重要性を学びました。反対意見を含む情報をも集めることで、仮説の説得性が高まりました。提案する側とされる側では視点や優先順位が異なるため、複数の仮説を持つことが必要だという考えにも納得できました。 目的と結論の整理は? さらに、仮説には問題解決だけでなく、目的や時制で整理される結論の仮説があることを知りました。問題解決のプロセスであるWhat、Where、Why、Howという問いは、日々の目標設定において部下との面談で活かされ、お互いに何が問題で何に取り組むかを具体的にすり合わせることができたと実感しています。

データ・アナリティクス入門

多視点比較で広がる学びの世界

比較の意義は? 分析の要点は、比較にあるという点が非常に印象深かったです。動画と同様に、特定の企業を導入するという目的が先行しがちで、その情報をもとに比較対象を探すことが多かったため、ディスカッションを通してさまざまな視点が存在することを学びました。今後の学習では、固定概念にとらわれず、他の選択肢についてもしっかりと検討することが必要だと感じています。 異なる視点は? また、前述の通り、導入の目的が一方に偏る傾向があったため、別の視点も重要であると再認識しました。自分自身の考えだけに依存するのではなく、異なる問題意識や視点も考慮しながら、比較を進める際に他の検討要素がないか常に意識するよう努めたいと思います。 検証はどうする? さらに、提案時にはイシューを軸にして比較の正しさを検証し、どのグラフが正確な情報を伝えられるかを熟考することが不可欠だと感じています。ブレインストーミングで生成AIを活用し、他の視点が得られないか確認すること、そして上司にこまめに相談して要点に漏れがないかチェックする姿勢も大切だと実感しています。

クリティカルシンキング入門

データを多角的に分析する力を養う

データの分解にどう立ち向かう? 今回、数値データを扱う際には、データを正確に整理し、重複や漏れがないように分解することを心がけました。例えば、年齢別のカテゴリ分けや売上を単価と数量に分解すること、あるいは工程を細分化することなど、多角的な視点で情報を分類することを意識しました。 顧客分析で重点をどこに置く? このようなデータの分解方法は、ソリューション販売の戦略を構築する際に非常に有用だと思います。特に、顧客層を地域別や人口密度に基づいて分析することで、どこに重点を置くべきかが明確になります。当社製品をどの地域や規模の顧客に訴求するのかを見極めることが、営業エリアやターゲットの設定に役立つと感じました。 営業活動の現状をどう見直す? 現状の営業活動についても、業界全体の数値データをいろんな視点で分解して分析しようと考えています。この分析結果をもとに、現在の営業状況とどのように一致しているか、またはどこでズレが生じているかを見極めたいと思っています。これにより、正しかった施策と改善が必要な点がより具体的に把握できると考えています。

クリティカルシンキング入門

問いに挑む学びの瞬間

最重要な問いは何? まず、解決すべき問いを明確にすることが最も重要です。自分が直面する問題とその理由を具体的に整理し、問いとして言葉にすることで、議論の軸がぶれにくくなります。次に、論点を整理し、異なる視点から検討を重ねるとともに、正確な情報を根拠と共に収集することが求められます。そして、シンプルで分かりやすい表現を使って主張を伝えることが大切です。 会議の目的は何? 会議を進行する際も、まず解決すべき問いをはっきりとし、その目的を問いの形で参加者と事前に共有します。これにより、イシュー解決のため必要な情報の収集や、基礎知識の習得が促され、多様な視点からの議論が円滑に進む土台が整います。議論が逸れた場合は、速やかに本来の問いに立ち戻ることが重要です。 問題をどう分解? また、優先順位を考慮しながら、解決すべき問いを中心に据えて問題を分解し、必要な情報を効率よく整理することが求められます。各分野の基礎知識を最低限修得しておくことで、根拠に基づいた主張ができ、事前に共有した問いや論点を軸に、有効な結論に導くことが可能となります。

「必要 × 情報」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right