データ・アナリティクス入門

方向を見失わないための「What」の重要性

重要なのは「What」か? 仕事をしていると、「What」がないのに「How」ばかりがある状況に直面することが多いです。自分にもチーム全体にも、「What」を考える時間を重視する習慣を身につけたいと感じました。アイディアを出すのは楽しいですが、「What」がなければ方向性がぶれてしまうためです。 新規事業の存在意義は? 現在取り組んでいる新規事業においては、まず「何のために?」という部分に立ち返り、事業の存在意義自体を見直す必要があります。この事業は「What」無しに発足してしまったため、事業計画の見直しや販促計画の策定においてもその点を重視したいと思います。 ロジックツリーをどう活用する? 具体的には、ロジックツリーを作成し、もれなくぶれなく、汚く早くを実現する手法として活用します。社内には要素分解が得意で、ロジックツリーを使って思考を展開し成果を出している社員がいるので、その人をロールモデルにします。

クリティカルシンキング入門

整理がカギ!効果的な伝え方のコツ

頭の中の整理法は? 頭の中で考えていることをそのままアウトプットする前に、まずは整理して組み立てることが重要だと学びました。話す順番や理由を順序立てて伝えることが、情報を効果的に伝える鍵です。加えて、根拠については複数の視点から考え、それらを対比させることも必要です。 学びを現場でどう活かす? 上司への説明・相談や顧客への提案に、この学びを活用できると感じました。学んだ理論や視点を活かし、伝えたいことやその根拠を分解・整理して伝えることで、自身の意見が採用される確率を高め、時間の短縮も図りたいと思います。 ロジックツリーの活用法 具体的な方法として、上司への説明や相談、顧客への提案の際にはロジックツリーを作り、整理してから話す時間を取ることにします。メールを送る際も、送信前に相手にとって伝わりやすい内容になっているか確認し、返信内容が期待と異なる場合は内容を見返す時間を設けるようにしたいと思います。

データ・アナリティクス入門

平均の壁を越える、新指標の挑戦

課題はなぜ難しかった? 前週に比べ、今回の課題は難易度が上がっており、理解するまでにやや時間がかかりました。これまでは平均値を中心に分析していましたが、今回は単純平均、加重平均、幾何平均、中央値、標準偏差といった各指標を活用することで、より正確な分析に結びつけることができると感じました。 営業データの見直しはどうする? 業務では営業関連の数字を扱う機会が多いため、従来は一律の平均値を用いて前年度との比較を行っていました。しかし、さまざまな方法を試すことで、異なる角度からデータを分析できるのではないかという可能性を感じています。 新手法の試行錯誤は必要? これからは、どのデータにどの指標を適用するかを十分に検討した上で、目的に合わせたデータの取得と分析に取り組んでいきたいと思います。新しい手法に慣れるまで試行錯誤はあるかもしれませんが、自分にとっての最適な分析方法を見つけ出すことを目指します。

マーケティング入門

営業活動にも応用できるターゲット戦略の秘訣

ヒット商品に必要な要素は? ヒット商品に共通している要素は、ターゲットが明確であり、新しい需要を創造している点です。ターゲットが明確であることで、ニーズの特定や深堀りが可能となり、結果としてこれまで提供されていなかった価値を見出すことができます。 どうやって顧客解像度を高める? この考え方は、自身の営業活動にも活用できると感じました。営業先のお客様の解像度をもっと高める必要がありますが、一人ひとりの解像度を詳細に高めることは時間的に難しい状況です。そこで、ある程度の区分分けを行い、顧客管理を通じて傾向と対策を立てることが求められます。 効果的な営業シナリオの構築方法 具体的には、顧客リストを確認し、顧客がどのように区分されるかを自身なりの仮説に基づいて整理します。その後、それぞれの区分ごとに顧客解像度を高めるための情報を収集し、各顧客に対して効果的な営業シナリオを構築することが重要です。

データ・アナリティクス入門

仮説と挑戦で切り拓く未来

業務の姿勢はどう? 私は、ありたい姿やあるべき姿を常に意識しながら業務に取り組むことの大切さを実感しました。単に課題解決のための行動にとどまらず、広い視野で業務全体や自分自身のキャリアを見つめることで、さらに良い成果につながると感じています。 仮説の見極め方は? また、目標や理想とするゴールを常に意識すること=仮説を立て行動することが重要だと学びました。その上で、その仮説が正しいかどうかをフラットに判断できるために、最短時間でデータ解析を行う能力を身に付ける必要性も感じています。目的やゴールを明確にすることが、日々の訓練として非常に有用だと思います。 業務の目的は何? さらに、どんな些細な業務であっても、まずはその目的や背景を把握し、仮説や想定を立て、それを裏付ける理由付けやデータに基づいて解析する。こうした一連のプロセスを常に実践し、自分の働き方に定着させたいと考えています。

データ・アナリティクス入門

仮説の種が戦略を育てる

仮説の捉え方はどう? 仮説を立てる際、時間軸と結論の視点で捉えるのか、あるいは問題解決のための手段として捉えるのか、細かく分解できることに気づきました。漠然としていた仮説も、目的と必要な手段を明確にすることで、より効果的かつ実践的なものに仕上げることができると学びました。 本当に必要な策は? 売上向上を目指す中で、「何が必要か?」という曖昧な問いだけでは、的確な戦略が立てられないという経験があります。そのため、問いを細分化し、一つ一つの要素に対して仮説を立て検証することが重要だと実感しています。 現状分析の手法は? 具体的には、まず自部署の業務範囲における現状の顧客アプローチ方法を洗い出し、効果があるものとそうでないものをデータに基づいて検証します。その上で、検証結果を踏まえて問題解決のための仮説を構築し、ボトルネックとなっている部分の改善策を検討していく手法を実践しています。

データ・アナリティクス入門

集めて比べる、学びの第一歩

ライブ授業をどう捉える? ライブ授業を通して、分析においては「比較」が非常に重要であると改めて実感しました。限られた情報の中で考察を進めると、様々な視点が生まれる一方で、正確な回答を導き出せない場合もあることが認識できました。 データ準備の確認は? データ分析を実施する際には、まず必要なデータをしっかりと揃えることが不可欠だと学びました。新しいシステムの導入を検討する場合、価格、使用頻度、使用者の経歴、最も利用される時間帯など、複数のデータを準備し、事前に確認すべきポイントを絞り込む必要があります。 集計と比較はどうする? その上で、まずは確実にデータを集め、その後に集めたデータを比較しながら、必要な情報や懸念点を検討していくことが大切です。さらに、足りない情報がないかを意識しながら、新しいシステムに求められる要素を見極めるプロセスの重要性を再認識しました。

クリティカルシンキング入門

日常に学びを組み込むコツと発見

学習のサイクルを意識するには? 学習を振り返ることで、インプット、アウトプット、ディスカッションのサイクルを反復する重要性に改めて気づきました。また、表の分析や加工方法についても復習することができました。 新規事業企画における議論の重要性 新規事業企画の場面では、様々な切り口で分析し、加工して考えることの重要性を再認識しました。議論から得られる新たな視点にも気づかされたため、積極的に議論を進めていきたいと思います。インプット、アウトプット、ディスカッションの習慣をつけることを目指します。 日々の学習をどう組み込む? 日々の学習が基本であると感じました。どんなに忙しくても、生活の中に学習時間を組み込んでいく必要があります。日々の事象を視覚化し、構造化することで問題解決に取り組むことが重要です。読書や業務の問題点を視覚化して解決策を模索していきたいです。

デザイン思考入門

ターゲット意識とプロトタイプの挑戦

プロセスをどう捉える? 板のデザインについて、どこがデザイン思考のプロセスに沿っているのか、またどこがそうではないのかを考察することで、デザイン思考の範囲が整理できたと感じます。特に、ターゲットの選定に関して、これまであまり意識していなかった点に気付かされ、今後はターゲット意識をより一層持って取り組んでいく必要性を感じました。 短研修で何が変わる? また、研修設計および実施に携わるチームを率いる中で、ショートバージョンの研修を試行しながら、参加者の反応やフィードバックを取り入れ、数多くのプロトタイプを作成することの重要性を再認識しました。さらに、上司と部下の1対1やOJTの質を高めるために、必ずしも長時間を割く必要はなく、30分程度のライトなセッションでも、気づきや学びを得られる施策をチームで議論し、数多くのアイデアを生み出すことに意欲を持っています。

クリティカルシンキング入門

学びを活かせる!視覚化で伝える極意

考え方から視覚化へ進化 Week01からWeek04までの学びを通じて、「考え方」や「文章化」から「視覚化」へと自らの理解が深まってきました。相手に何を伝えたいかを「視覚」的に表現することが重要で、学んだことが線として繋がる感覚を得ています。 最適なグラフ選びの重要性 「視覚化」の過程で、適切なグラフを選択することが大切です。データが時系列の場合は縦の棒グラフ、経緯や変化を伝えたい場合には折れ線グラフが推奨されます。特に、普段の仕事では「帯グラフ」を使う機会が少ないことに気づきました。 読んでもらえる文章を目指して 良い文章には目的性、読者理解、しっかりした内容、読んでもらえる要素が必要です。特に、タイトルやリード文に工夫を凝らすことで、興味を持たせることがポイントです。キャッチーなタイトルとアイキャッチを意識して作成します。

データ・アナリティクス入門

データ活用で見えた新たな気づき

平均値の選び方は重要? 平均値には様々な種類があり、その選択はデータに大きな影響を与えます。外れ値がある場合、平均値よりも中央値を採用することが重要であり、データのばらつきを数値で示すために標準偏差を使用することが効果的であることを学びました。 輸送会社ごとの加重平均とは? 私たちの事業所で使用する輸送会社の使用率を考慮し、加重平均を採用することで、待機料などの平均額をより正確に把握することができると考えました。 データの明確化を目指して 費用や作業時間を集計するアプリを使い、加重平均と標準偏差を計算することで、数値の差を明確化し、より精度の高い平均値の算出を目指しています。 実績データとの比較はどうする? これらの処理結果として得られた加重平均値を基に、毎月の実績データと比較し、データの妥当性と信頼性を確認する予定です。

データ・アナリティクス入門

妥協を捨てた学びの軌跡

現状の問題確認は? 問題を特定する際は、What、Where、Why、Howの観点から確認する重要性を改めて感じ、ABテストの存在も初めて認識しました。また、分析を進める中で「このくらいでいいや」という気持ちを捨て、徹底的に考え抜くことの大切さを実感しました。 企画実行はどう? 自ら企画を立案する際も、同じ観点で問題を明確にし、仮説を立て、データに基づいた検証を徹底することが必要だと考えます。そうすることで、企画の実行可能性が高まり、周囲からの賛同も得られると感じています。 学びをどう活かす? これまで学んだ内容を丁寧に振り返り、積極的な実践を心がけたいと思います。業務が繁忙になると学んだことをおろそかにしがちですが、本講義で得た知識を振り返り、日々の業務にどのように適用できるかを考える時間を常に確保していきたいです。

「必要 × 時間」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right