データ・アナリティクス入門

仮説で描く未来の戦略図

仮説整理はどう進む? ビジネスフレームワーク(3C、4Pなど)を活用することで、なんとなくで仮説を立てるのではなく、複数の仮説をMECEに整理できるという認識が得られました。また、仮説には「結論の仮説」と「問題解決の仮説」の2種類があることを知り、仮説に対する考え方が大きく変わったと感じています。 課題解決は何を問う? マーケティング施策の企画段階では、まずお客様の課題が何であるかを明確にし、What、Where、Why、Howのプロセスに基づいた問題解決の仮説思考を用いることで、心に響く施策を考案したいと考えています。一方、振り返りの際には、施策の結果を踏まえた上で結論の仮説を用い、データを検証していくことが重要だと感じました。 計画実行はどう見る? 今年度の施策の振り返りと来年度の計画を進める時期にあたり、初めからデータを集計するのではなく、まず仮説を立て、その検証に必要なデータを収集・比較分析するアプローチを取り入れていきたいと思います。

マーケティング入門

視点を広げるマーケティング学習の魅力

ミクロとマクロは? 今週は、総まとめとしてライブ授業が行われました。授業を通じて、物事をマーケティング的な視点で捉える際には、個人の考えを反映したミクロな視点と、世の中の動きを反映したマクロ的な視点が必要であることを学びました。この学びを活かして、世の中のトレンドや動きに注目し、流行の背景を考えるといった基本的な行動を継続していきたいと思いました。 仕事にどう反映? 今後、仕事において顧客とのミーティングや社内でのやり取りの中で、積極的にマクロ的な視点を活かした発言ができれば、より高い視座を持って先を見据えた計画で仕事を進められると感じました。 企画力向上の秘訣は? また、今期中には新サービスの提案や企画力を強化するために、業界のトレンドを追い続け、注目のアプリやサービスを分析し、隔週で発表し合う取り組みを進めることになりました。この場でも、これまで学んできたポジショニングなどのフレームワークを活用していきたいと考えています。

マーケティング入門

本音で紡ぐリアルな学び

体験の本質は? 提供サービスの情緒的価値を向上させるためには、商品の体験を正しく把握し、その体験を体験者自身に言語化してもらうことが非常に効果的だと感じました。体験を通した付加価値は、単なる機能的価値を超えて情緒的価値を高めるうえで重要です。 顧客対応の改善策は? 一方、管理業のように顧客と長く接するサービスでは、悪い点にも目が向きがちです。そのため、時には顧客との接点を意図的に遠ざける方針が取られるケースも見受けられます。私は、B2C事業の現場でユーザー目線に立ち、よりポジティブな体験を設計することで、全体の価値向上に繋げたいと考えています。 コンテンツ戦略は? また、HPのリニューアルに伴い企画中のコンテンツでは、リアルな声を反映した内容の採用を検討しています。STPや4Pのフレームワークを活用し、対象を明確に整理したうえで、サービスの強みを探り、情緒的価値を表現するための言葉選びに努めたいと思っています。

データ・アナリティクス入門

比較で見つけた戦略のヒント

同条件で比較する? 分析とは、同じ条件下での比較を行うことだと思います。たとえば、「Apple to Apple」の視点で比較を行うことで、分析の目的やゴールが明確になり、結果の精度も向上します。また、分析を進める際は、仮説を立てることで、目的外の迷いに陥らずに進められると感じています。 ブランディングはどう? 現在、私はプロダクト開発とコンテンツ企画・運営に携わっており、いずれも競合が存在する中で、自社のブランディング戦略を考える必要があります。ただ、現状ではプロジェクトオーナーの感覚や経験に頼る部分があり、より現実的かつ客観的な視点を取り入れる余地があると感じました。 課題整理は進んでる? そこで、まずは各プロジェクトの目的とゴールを再整理し、現時点での課題を明確にすることが重要だと考えています。その上で、適切なフレームワークやツールを活用した分析を行い、より精度の高い戦略策定を目指していきたいと思います。

データ・アナリティクス入門

仮説と比較で見える成長の軌跡

A/Bテストの見直しは? 業務において、あまり考えずにA/Bテストを実施していたことに気づきました。今後は、企画段階からバイアスを取り除く方法を模索し、比較のためのベースラインを整えることに留意したいと考えています。仮説に基づいてどのように探索を進めるかが鍵となり、改めて分析は「比較」が非常に重要であると実感しました。 フレームワーク活用法は? また、これまで学んだフレームワークや考え方(3C、4Pなど)を積極的に取り入れていきたいと思います。習得がすぐにはいかなくても、慣れるまで継続して実践し、しっかりと身に着けていく所存です。 データ分析はどう行う? さらに、A/Bテストを実施する際には、可能な限りランダマイズすることや、比較に必要なサンプル数や実施期間を十分に検討することが重要だと感じました。分析時にも、どのような背景や手法でデータが収集されたのかを意識しながら、より正確な評価を行えるよう努めていきます。

マーケティング入門

シーンで変わる製品の本当の価値

どんなシーンが大切? 商品の機能そのものだけに注目するのではなく、どのような場面で顧客が求めるかを起点に考える重要性を実感しました。同じ防水性能であっても、現場での使用と雨天時の対策では、求められる価値や伝え方が大きく異なります。ターゲットを変えることで、同一商品でも別の価値を再定義できるのだと感じました。 どう企画を実現する? また、セグメンテーションや6R、ポジショニングといったマーケティングのフレームワークを確立し、自社の新しい価値をしっかりと打ち出す必要性があると学びました。これらの手法を活用することで、従来の属性別アプローチにとらわれず、行動や価値観、具体的なシーンに基づいた提案が可能となり、新たな顧客層へアプローチすることができると考えています。同時に、取引先に対しても市場性や費用対効果をロジカルに説明することで、企画提案や商談の成功につなげるための提案力と説得力が向上する点も印象に残りました。

データ・アナリティクス入門

ひらめきを引き出すMECEの力

MECEでどう選ぶ? アイデア出しのプロセスで、MECEという手法を用い、全体像の中からアイデアを絞り込む方法が特に印象に残りました。たとえ評価基準で最終的に採用されないアイデアであっても、いったんすべて洗い出して評価することで、新たなチャンスや問題点を発見しやすいと感じました。 階層分析で何が見える? また、プロジェクトにおけるアイデア出しでは、階層ごとに分析することで、さまざまな発想が生まれやすくなる可能性を実感しました。同じく、課題を分析する際も、階層別や変数別に整理することで、より具体的な問題点に焦点を当てることができると感じました。 なぜ体感するのか? 現在は、アンコンシャスバイアスの解消を目指した若手ワーキング向けのフレームワークを企画しています。その一環として、MECEを取り入れたグループワークの時間を設け、同僚と一緒に体感する場面を設定したいと考えています。

データ・アナリティクス入門

多角的視点で広がる戦略の可能性

多角的視点は有効か? フレームワークの各視点を取り入れることで、仮説の幅を広げることができるとの示唆が非常に印象に残りました。たとえば、問題解決の4つのステップや、事業戦略の分析で利用される3C、サービス検討の4Pといった多角的視点を活用することで、より網羅的な分析が可能になります。 仮説の見直しは必要? 一方で、これまでキャンペーンの仮説を立てる際には、十分な視点を持たずに取り組んでいた自分に気付かされました。今後は、複数のフレームワークを意識的に取り入れ、仮説同士に網羅性を持たせることを心がけたいと思います。 継続検証で進化できる? また、複数の仮説を立て、継続的に検証を繰り返すことで、ABテストにおいて有意な差を見出せると期待しています。自分が企画するキャンペーンの成功に向けて、どのフレームワークが活用できるかを検討することが、今後の課題となるでしょう。

デザイン思考入門

デザイン思考が導く学び

他者意見の学びは? これまでのグループワークを通して、さまざまな方の意見に触れる機会がありました。今回のテストでは、また違った視点からのフィードバックを得ることができ、他者の視点がとても貴重であると実感しました。 サービス企画の一歩は? 普段の業務では、新しいサービスを企画する際に、プレマーケティングとして信頼関係のあるお客様に紹介し、フィードバックを収集する機会を設けています。このプロセスは、まさにデザイン思考のテストフェーズそのものだと感じました。 デザイン思考の活用は? また、これまで深く意識していなかったデザイン思考が、実際には日々の業務に広く活用されていることに気づかされました。今後は、サービス開発だけでなく、社内での合意形成やプロジェクト推進など、その他の業務にも積極的に応用していきたいと思います。

データ・アナリティクス入門

仮説×データで未来が変わる

仮説とフレームワークは? 本講座では、問題解決のプロセスにおいて、スピードと精度を向上させるために、仮説を立てながら分析を試みる重要性を学びました。また、3Cや4Pといったフレームワークを効果的に活用する方法も理解できました。 必要データはどうする? 仮説に基づいて必要なデータを抽出し、場合によっては新たにデータを取得する必要があることも実感しました。既存のデータ分析にとどまらず、サーベイの実施などによって分析に不可欠な情報収集にも役立てることができると感じました。 多角的観点は何故? さらに、分析の視点は単に数値やデータを検討するだけでなく、データ整備や企画立案の段階でも重要であるという気づきを得ました。今後、業務のあらゆる場面でこれらの視点を取り入れながら取り組んでいきたいと思います。

データ・アナリティクス入門

4P×視点で挑む企画実践

仮説構築はなぜ必要? フレームワークの学びとして、単に概念を理解するだけでなく、複数の視点からの仮説構築が重要である点が印象に残りました。特に、3Cや4Pといったフレームワークを活用しながら、問題解決の4つのステップに沿って企画を推進する手法は、今後の業務に活かしたいと感じています。 4P要素をどう捉える? 日々のコンテンツ企画業務においては、4Pの各要素を具体的に捉え、製品=コンテンツの内容、場所=コンテンツの掲載場所、プロモーション=コンテンツのデリバリーと定義することで、より広範な仮説を洗い出す取り組みが重要だと考えています。これにより、問題解決に向けたアプローチが一層明確になり、実践的な企画作成に繋がると実感しています。

データ・アナリティクス入門

仲間と共に広がる発見の輪

異なる視点になぜ注目? グループワークを通して、自分では気付かなかった切り口や別の視点からの意見を得ることができ、その重要性を実感しました。一人で考えるよりも、多角的なアプローチで知見を広げることが大切だと感じています。 多角的整理の意義は? また、個人で企画や分析を進める際には、フレームワークを活用し、抜け漏れなく複数の視点から情報を整理することを意識したいと思います。特定の仮説に固執せず、他部署の意見や異なる分野の知見を取り入れることで、より幅広い視野に立った判断ができるように努めたいと考えています。

「ワーク × 企画」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right