データ・アナリティクス入門

分析の「比較」効果で迷い解消!

分析の基本: 比較の重要性とは? 分析は比較であるというシンプルな理解に到達しました。以前は、数字から何を見出すべきか分からず複雑に考えていましたが、シンプルな視点からスタートすることの重要性を学びました。ただし、正しい比較対象がなければ、正確な分析はできません。このことに関連して、"要素をそろえる"という部分については、さらに実践的な学習や本コースでの深掘りを行いたいです。 効率的な分析設計のために必須なことは? また、グラフなどの見せ方を決定する以前に、分析する目的を設定すること、特に依頼された場合はその確認が大事だという点も理解しました。これにより、システムテストの品質評価やベンダー選定時など、具体的な場面で分析の質を向上させることができると考えています。 データ分析における注意点とは? これまでの経験では、依頼時に目的が曖昧な状態で受け取ることが多く、データの分析において何をすべきか判断がつかなくなり、結論を出せないこともありました。今後は、以下の3点を重視して取り組む予定です。まず、やみくもにデータを加工せず、目的の確認と仮説立てを確実に行うこと。次に、分析は比較を念頭に置くこと。そして、比較対象を分析の目的に沿って選定することです。 依頼者とのコミュニケーションで何が重要? 依頼者からは、目的の確認や必要な分析の方向性をしっかり聞き取ることが重要です。分析を始める前に目的を明確にするステップを必ず取り入れるべきだと感じました。その際、仮説をある程度考えると良いと思いました。また、仮説を立てる際には、比較対象が適切かどうかを依頼者と事前に合意することで、さらにスムーズに進められると感じています。

データ・アナリティクス入門

発見!数字が紡ぐ成長物語

現状と目標はどう? データ分析の基本は、まず現状を正確に把握し、理想の状態を明確にすることにあります。現状を理解した上で目標を設定することで、実現可能な改善策の検討が可能となり、より効果的な意思決定につながります。 比較で見えるものは? また、分析作業においては、異なる時期やグループ間での比較が鍵となります。比較を行うことで、問題点や改善策が明確になり、データから得られる示唆が深まると感じました。 切り口の変化に気づく? さらに、データの分解や分類、そして視点の切り替えを適切に行うことが分析の精度向上に直結します。目的に合わせた切り口でデータを見ることで、従来は見落としがちな傾向や改善点が浮かび上がり、最終的に意思決定を行う上で必要な情報が明確になります。 グラフで何が分かる? 実務での分析において、ヒストグラムや散布図を取り入れる試みを行いました。これまで平均値や中央値といった基本的な数値だけで評価をしていたため、賃貸物件の募集データにおけるばらつきや分布の傾向を見逃していました。しかし、ヒストグラムや散布図を作成することで、特定の物件の賃料が極端に高いまたは低いケースが存在していることに気づくことができ、単純な平均値だけでは把握できなかった重要な情報を得ることができました。 次は何に注目する? 今後は、データ収集時に注目すべきポイントや重要な変数を明確にし、分析の目的に合ったデータを選定することを徹底します。また、定期的にヒストグラムや散布図を作成してデータのばらつきや傾向を常時確認し、分析結果を関係者に報告してフィードバックを受けることで、さらなる改善を進めていくつもりです。

リーダーシップ・キャリアビジョン入門

メンバーのモチベーションを掘り下げる学びの旅

メンバーエンパワーメントをどう高める? 今週の学びに大きな変化はなかったため、これまでの講座全体のまとめとなります。まず、メンバーのモチベーションをカテゴリー別に分け、それを掘り下げる理論を学べたことが大きな意義を持つと感じました。各メンバーのエンパワーメントの源を探るために、ワンオンワンなどの行動が有効であることも理解できました。ただ、私自身、メンバーのゴール設定の際に自分で完遂しようとしてしまうことがあるので、今後はメンバーに任せることを心がけたいと思います。 グループワークの価値とは? 講座全体を通じて一番役に立ったのは、やはりグループワークでした。偶然ではありますが、同じビルに勤めている人とつながることができ、彼から多くのインプットを得ることができました。そのおかげで、自分の学びを深めることができ、また彼のノウハウを学ぶ機会にも恵まれました。グループワークを通じたネットワークでの情報交換は非常に貴重なものでした。 キャリア開発をどう進める? 次に、私にとって特に重要だったのは二つのポイントです。一つ目はキャリア開発です。今年6月に新しい職場に入ったばかりで、メンバーが何にモチベーションを感じるのか、またはデモチベートされるのかを明確にするための言語化ができていませんでした。前職で使用していたテンプレートを活用し、8月中にそのすり合わせを進める予定です。 SL2の活用方法について 二つ目はSL2です。これを私だけが書くのではなく、メンバーにもその目的や役割、そして書き方を理解してもらい、特にお互いにどのようなサポートが必要かをオープンに話し合う機会を9月以降に設けたいと考えています。

クリティカルシンキング入門

業務に役立つクリティカルシンキングの実践

目標に近づくには? 全体の振り返りを行ったことで、改めてWeek1の時点で描いていたゴールに近づくために、具体的にどう行動すればよいかを考えることができました。 悩みをどう解決する? 当初、私はお客様の行動分析をするうえで、課題に対する仮説の立て方や、正しい判断をするための具体的な方法が分からないという悩みがありました。しかし、クリティカルシンキングで学んだ自問自答や分解の手法を反復実践していくことで、今後はこの悩みを解決につなげられると思いました。 学びをどう活用する? 次のような業務に学びを活用したいと思います。 - 個人目標設定 - 企画や改善業務の推進(特にゴールを具体化する際) - お客様アンケートなどの行動分析 - 資料・コンテンツ作成 - 他部門や他社への協力要請(コミュニケーション面) 具体的な実行プランは? 自身の業務では、来期の個人の目標設定をする時期にあるため、以下の点を実践し、成果を上げられるように取り組みたいと思います。 - 課題解決の目的を自問自答しながら考える - 事実をもれなくダブりなく分解し、客観的に判断する - 抽象的な情報を具体化し、ポイントを絞って課題解決する - 相手の常識を覆すような情報の伝え方をする - 目的がぶれないように共有し、一貫して押さえ続ける 分析に効果的な方法とは? お客様アンケートなどの結果を分析する際には、イシューを考え、分解する手法を実践したいと思います。実際にやってみると、とても時間がかかることが分かりましたが、客観性を担保することで、効果的な課題解決につながることを知りましたので、今後も業務で継続していきたいと思います。

データ・アナリティクス入門

小さな問いから始まる大発見

分析の仮説はどう? 今後は、自社Webサイトのデータ分析において、依頼を受ける側から自ら積極的にABテストやファネル分析の目的、仮説、プロセスを策定し、実施に移す考えです。各プロセスを詳細に分解することで、どのページやどの段階でボトルネックが生じているのかを明らかにし、原因を追及するとともに、具体的な改善提案ができる分析へと進化させたいと考えています。また、日常生活に存在するささいなデータにも目を向け、シミュレーションを繰り返し行うことで、より一層の分析力向上を目指します。 問題をどう特定? 業務の効率向上や問題解決のためには、まず問題を明確にし、その問題がどの段階で発生しているのかを特定することが重要です。具体的には、以下の点を実践していきます。まず、Webサイトだけでなく、日常生活の中で得られるデータも積極的に収集し、「なぜ」を5回繰り返すことで原因に迫る姿勢を持ちます。次に、あらゆる分野の情報収集を行い、同僚とのコミュニケーションを通じてマーケティングの知識も深めます。加えて、依頼された作業にとどまらず、自主的に分析に取り組むことを意識し、課題に対しては目的や仮説を明確に設定し、複数の仮説を立てながら、ファネル分析やABテストの計画を練ります。 改善策の道筋は? さらに、プロセスをより詳細に分解し、各ステップでのユーザー行動(CS行動)を可視化することで、ボトルネックの特定と原因の解明を進めます。分析結果については、同僚と共有し、議論を重ねながら改善策を提案していく予定です。この一連のプロセスを繰り返し実践することで、より実践的な分析力を身につけ、今後の業務に活かしていきたいと考えています。

クリティカルシンキング入門

イシュー明確化で見えた改善への道

イシューの本質は? イシューを明確にすることの重要性について学びました。まず、思いついた解決策を実行する前に、課題の核心を押さえるイシューを明確にすることが必要です。誤ったイシューの捉え方は、課題解決の方向性を大きく逸脱させる可能性があります。適切なイシューの見つけ方として、次のプロセスを実行することが推奨されます。 目的と現状は? まずは、何を達成したいのかという目的をはっきりさせることです。また、関連するデータや情報を集めて現状を把握し、関与する人のニーズや期待を理解することが重要です。さらに、現状を多角的に分析し、具体的な問題を明らかにすることが求められます。 戦略のギャップは? 次年度の戦略立案や施策検討では、目標と現状のギャップを認識し、その原因を探るために十分な情報収集を行います。これまでの施策を見直し、改善点を見極め、メンバーと共通のイシューを持ちながら検討を進めることが重要です。 セミナー効果は? また、プロモーションを目的としたWEBセミナーを開催し、その効果を検証します。具体的には、申込人数や参加動機、顧客属性の分析を通じて、セミナーの目的と結果が一致しているかを確認します。さらに、事後営業の戦略を考え、効果を数値で評価します。 問いの共有は? 業務においては、問いから始め、問いを残し、問を共有するというアプローチも重要です。特にプロジェクト進行中においては、最初に設定した問いから外れることを防ぎ、メンバーと目線を合わせる工夫が求められます。そのために、年度初めに評価指標を設定し、過程を記録して振り返り可能な状態を構築することを考えています。

データ・アナリティクス入門

業務の混乱をデータ分析で解消する挑戦

データ分析は日常にも必要? データ分析は、ビジネスだけでなく家電製品の購入など日常生活でも無意識に行われており、身近な行動の一部です。ビジネスの場では、定量分析が非常に有用です。一方、日常生活では感覚や好みなど定量化できない要素も分析項目になり得ます。 データ分析の目的とは? 重要なのは、データ分析は目的ではなく、目的達成のための手段であるという点です。ただ数値を比較したり並べたりするだけではなく、データに解釈を加えることで初めて目的に沿った活用が可能になります。したがって、他の業務と同様に、データ分析の際にも目的を考えることが大切です。また、分析したデータを使用する相手と目的を確認することも重要です。 職場のデータ環境は? 現在の職場では、データ分析を行いながら業務を進める人がほとんどいません。業務の担当も定まっておらず、情報を共有する環境も整っていないため、分析に必要なデータが揃っていないと感じています。入社して半年経ちますが、過去のデータ(案件、契約金額、契約終了後の顧客評価など)や取扱製品の情報が一覧になっておらず、それぞれの資料を見るか人の記憶に頼るしか方法がないことに難しさを感じています。 必要なデータの収集方法は? まずは、分析に必要なデータを集めて整理することが必要です。その後、競合との差別化や取引業者の選定など、目的を設定した上で必要なデータ分析を行います。具体的には、人の記憶に頼っている情報を可視化し、自分が入社してから苦労してきた過去のデータや取扱製品の情報を整理します。その上で、現在の会社の課題を意識し、その課題解決のために必要な分析を進めていきたいと考えています。

クリティカルシンキング入門

進むべき道を明確にする思考法

問いを立てる重要性とは? 問題解決においては、まず問いを立てることが大切です。なぜなら、問いを立てることで答えやゴールが明確になり、進むべき方向性が定まるからです。たとえ問いが間違っていたとしても、見直しをして再度問いを立てれば解決できます。 客観性をどう確認する? 物事を進めるには、自分の意見や考えが客観的であるかを問い直すことが必要です。人間は主観的な考えに流れがちなので、自分自身で客観性を確認する意識を持つことが重要です。これは日々の反復トレーニングが不可欠です。 視覚化はなぜ効果的? 視覚化の力は非常に有用です。伝えたい内容を適切なグラフにすると、相手に伝わりやすくなります。ポイントは、内容を選び、それに合ったグラフを選択することです。 クリティカルシンキングをどう活かす? コンサルタントという職業柄、クリティカルシンキングの思考やフレームワークを駆使する場面が多くあります。特に以下の四つを意識して実践しています。 まず一つ目は、日々の定型作業の改善意識です。なぜ必要か、もっと良い方法はないかを自問し、考えを周囲に話すことで賛同者を集め、改善案をまとめます。 二つ目は、資料作成力の向上です。問いを設定し、背景・課題・目的・対応策をグラフやエビデンスを用いてまとめます。 三つ目は、会議開始時の方向性合わせです。問いや目的、その日のゴールを全員で共有してから会議を始めます。 最後に四つ目は、会話を対話にする意識です。自己中心的にならず、相手の考えを汲み取りながらキャッチボールをするよう心がけます。 これらの意識を持ち続けることで、自分自身の成長と業務の効率化を図っています。

データ・アナリティクス入門

データ分析で見つける新たな視点

分析プロセスの目的は? 分析は、目的に基づいて要素を分けて整理し、意思決定に活かすためのプロセスです。重要なのは、分析が迷子にならないようにすることです。目的を持ってデータを収集し、それに基づいて加工・分析を行うことが求められます。分析は比較となり、データの種類に応じた適切な加工法を使って意味を明確にすることが重要です。 視覚化手法をどう活用する? 視覚化の工夫も、分析の際には非常に役立ちます。例えば、n択の選択人数を割合で見る、全体に対する比率や割合を円グラフで表現するといった工夫が考えられます。推移の比較には縦棒グラフが適しており、要素間の比較には横棒グラフが効果的です。 仮説設定がなぜ鍵となる? 分析のプロセスで大切なのは、目的や仮説を明確にすることです。仮説をもってデータを収集し、加工して結果を導き出す過程で、なぜその分析を行うのか(背景)、そしてそのデータから何が言いたいのか(主訴)を明確にすることが鍵となります。また、仮説が誤っていると判明した場合は、分析の進め方や視点を見直し、正しい結論に導くことが必要です。 学んだことをどう実務に活かす? さらに、ライブ授業で学んだTIPSを実務に活かし、具体的なデータの可視化手法に取り組んでみることで、理解が深まります。質的データに関しても、名義尺度や順序尺度といった基本を学び、さらなる分析力を身につけてください。 このように、分析の目的やデータの加工法についてしっかり理解し、視覚化手法を活用することで、効果的な分析が可能になるでしょう。学んだことを実際のデータに適用し、実践を通じて、さらなるスキル向上を目指してください。

クリティカルシンキング入門

顧客満足度向上のための新たな挑戦

問いの本質をどう捉える? 問いの本質を捉える勘所を見極め、イシューを特定し実践するセンスを向上させるために、次のポイントを学びました: 1. 問いは何なのかを意識すること 2. 問いを意識し続けること 3. 組織全体で方向性を共有すること これを学んで、従来の手法を参考にしながらも新たな打ち手を探る重要性を実感しました。具体的な考え方を実践し、その過程で一貫した思考を保つことを意識しました。また、自分よがりの思考にならないように、関連部署との意見を共有し、異なる視点や発想を取り入れ、深く広がりのある提案ができるよう努めました。 顧客との関係構築の課題は? 顧客からの要望事例として、問い合わせに対する回答に時間がかかるといったシーンが紹介されていました。自分の周囲の業務に類似したシーンを振り返ると、主要な業務に特化するためのサポートが充実してきており、問い合わせが少なくなっていることを感じました。このことから、顧客とのコミュニケーションの減少が信頼構築や業績向上において課題であると認識しました。業務に余裕が生まれたことで、顧客に対してどのようなプレゼンテーションが可能かを話し合う必要性を感じました。 顧客満足度向上の一手は? 今年度の活動を振り返る中で、「顧客満足度を向上するには」をイシューとして設定し、課題解決に向けた気づきをメンバーと共有しました。鋭い勘を発揮し、高い共感度を持つ打ち手を確立することができればと考えています。さらに、業務の意義・目的を共有し、メンバーのやりがいや成長につながる新たな取り組みを展開し、次年度の計画策定に役立てていきたいと思います。

戦略思考入門

目的を再定義する学び

講座で得た大切なことは? この講座を通じて、自分が大切にすべきポイントを改めて認識することができました。まず、目的を定めることの重要性を痛感しました。ゴール設定や論点を正確にするために、必ずシンプルなフレームワーク(例えば、3C、バリューチェーン、コスト削減やバリュー拡張、5F視点)をセットで活用し、全体像を一旦俯瞰することの効果を実感しています。また、ターゲットを誰にするのかを明確にし、その理解を自社だけでなく取引先にも広げる必要があると学びました。そして、限られた資源の中で本当に重要なことにフォーカスするために、不要な部分を捨てるという考えが、最終的には顧客満足につながると感じました。 日常で学びはどう変わる? これらの学びは、日常生活のさまざまな場面で応用できると感じています。ビジネスシーンにおいては、3Year planやNegotiation、サービス開発などで、目的や資源、ストーリーテリングの視点を持つことで、規模が大きいプロジェクトでも立ち返りながらクイックに分析ができるようになりました。また、自身のキャリアを検討する際には、自分のユニークな強みや差別化戦略を振り返ることが、経済価値や希少性、模倣困難性、組織への影響などの観点から自分自身を理解するための手助けとなっています。さらに、家族や同僚、友人と接する場合にも、短期から長期までの目的や現状とのギャップを確認し、優先順位を整えることの大切さを実感しました。プライベートな時間の使い方についても、あるべき姿を思い出しながら自分なりの仕組み作りを進めることができ、受講中の学びが多方面で活かされると感じています。

データ・アナリティクス入門

ロジックツリー活用でKPI改善を目指す!

ロジックツリーって何? ロジックツリーの使用方法について新しい発見がありました。ロジックツリーには、変数分解に加えて「層別分解」という使い方があるのです。層別分解は、全体を複数の部分に分けて同じ次元で揃える方法で、それぞれの階層の下には同じ要素が並ぶイメージです。一方で変数分解は、要素の掛け算を分解し、原因を特定するのに役立ちます。これらの手法を試行することにより、より包括的で明確な分析が可能になります。 営業支援機能はどう? R&D部門における営業支援機能のひとつとして、顧客向けPoCの作成や自社商材のクロスセル・アップセルの立案があります。しかし、これらの活動においてチームのKPI進捗率に大きな差が見られます。そこで、KPI管理している指標の前段にある要素のKPI設定に漏れがないかを確認することが重要です。一連の要素には、要素A→B→C→PoC作成→D→E→クロスセルなどがあります。 KPI設定は見直す? 目的は、KPI管理している指標の前段にある要素のKPI設定に漏れがないかを確認することです。このために、まず関係者とブレストを行い、現在の管理状況に関わらず関連しそうな要素のアイデア出しを行います。その後、出てきたアイデアを元に、現在のKPI設定が定量的かどうか、またMECE(Mutually Exclusive and Collectively Exhaustive)であるかを検討します。このプロセスの中でロジックツリーを使用し、特に不慣れな現在は層別分解と変数分解の両方を試し、それぞれの使用感をメモしておくことが有効です。

「目的 × 設定」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right