リーダーシップ・キャリアビジョン入門

リーダーシップを学び、変える力を磨く

リーダーシップの開発法は? リーダーシップは生まれつきのものではなく、後天的に開発できるという点が非常に興味深いです。また、環境要因やメンバーの適合性を見極め、状況に応じて仕事の任せ方を変える重要性についても学びました。これはパス・ゴール理論に関連しています。 メンバーへの仕事の任せ方は? 普段の業務においては、メンバーに仕事を任せる際に活用できそうです。例えば、新入社員に対しては物事の背景や目的をしっかりと伝えた上で、具体的な手順まで指示して仕事を任せることが効果的です。一方で、ある程度の経験や知識を持つメンバーには、タスクの目的や背景を伝えるにとどめ、実際のやり方は個々人に任せるといった柔軟な対応が求められます。 自主性を尊重する工夫とは? このように、仕事を任せる際には対象者に応じてアプローチを変えることが不可欠です。新入社員には詳細な指導を行い、経験豊富なメンバーには自主性を尊重する形で任せる工夫が重要です。

クリティカルシンキング入門

一緒に探そう!抜け漏れゼロのデータ分析

どんな視点で見る? データを分析する際は、見る切り口によって見え方や分かる内容が変わるため、まずは様々な視点から状況を把握することが重要です。全体の傾向が見えた段階で、さらに細かい視点でデータを掘り下げ、分析を進めます。また、切り口に抜け漏れがないように設定することも求められます。 傾向はどう見抜く? 日々の物量の傾向を把握することで、必要な労働力(作業員や作業時間)を正確に計算できるようになります。業務改善を目的としたデータ分析では、どの作業がボトルネックとなっているのかを見極め、適切な改善アプローチの方向性を定めることが必要です。 抜け漏れはどう検証? 具体的な取り組みとしては、まず課題を漏れなく分解し、その状態を上司や同僚に確認します。もし抜け漏れがあればアドバイスを受け、補完の後、更に細かい分解を行うといったプロセスを実践しています。こうした取り組みは、MECEの考え方を意識しながら行う練習として効果的です。

クリティカルシンキング入門

分かりやすさで魅せる文章術

論理伝達はどうする? ナノ単科で学んだ内容は、ビジネス現場で求められる論理的な説明方法や伝え方を身につける大きな糧となりました。講座では、伝えたい目的に応じて複数の理由を明快に提示することや、主語と述語を明確にすることで説得力のある文章作成を実践しました。 説明の流れはどうなる? また、説明する際の論理の構造や流れについて、理由と根拠がしっかりと連携している点が強調されており、読み手にとって分かりやすい順序で情報が整理されていると感じました。上司やクライアントに対しても、これらのポイントを意識した説明が効果的であるという具体的な事例とともに学ぶことができました。 簡潔な表現はどう磨く? さらに、文章を短く端的に書く技法や表現のバリエーションを工夫することの大切さも実感できました。全体的に内容が具体的でありながら、無駄を省いた簡潔な表現が自然な日本語で伝わるようになっており、実務的な説明力の向上につながりました。

データ・アナリティクス入門

実務で活かす!徹底復習のススメ

なぜ復習が大切? 学んだ内容は、1週間前のものはすぐに思い出せる一方、1か月前のことはすぐに再現できないと実感しました。このことから、インプット、復習、そしてアウトプットの重要性を改めて学び、机上の学習にとどまらず、実務に活かす目的を持って本講座全体を自己復習しようと考えました。 どこから手を付ける? また、データビジネスやロジカルシンキングが未経験のメンバーには、いきなりドメインの詳細な説明をするよりも、入りやすい内容から始めるのが効果的であると感じました。具体的には、比較を用いた分析や、データ分析のプロセス、問題解決のステップなどが、そのヒントになり得ると考えています。4月以降の職務管掌は未定ながら、少なからず人材育成に関わる予定です。そのため、まずは本講座全体を自身で復習し、業務に必要な知見をピックアップしておくとともに、必要に応じてアウトプットすることで、自らの復習と組織全体の底上げを図りたいと思います。

データ・アナリティクス入門

数字が織りなす学びの物語

なぜ分析が進化する? ライブ配信を通じて、分析プロセスへの理解が深まりました。これにより、単に分析するのではなく、常に目的を念頭に置きながら、What-Where-Why-Howの視点でストーリーを組み立てる意識が高まりました。 データはどう伝える? また、グラフ作成時には実数と割合の両面からデータをビジュアライズすることで、情報のインパクトを分かりやすく伝える工夫が重要だと感じています。企画提案においても、企画の根拠や効果を示す際、数値だけでなく視覚的な表現を取り入れることで、読み手にしっかりと訴求できると考えています。 必要情報はどう整理? さらに、必要な情報は徹底的に収集し、自分だけで対応が難しい場合は、関係者にデータ提供を依頼するなどの手順を踏みます。データ受領後は、代表値やばらつき、外れ値などを実数と割合でビジュアライズし、効果を視覚的に分かりやすく確認することが求められています。

クリティカルシンキング入門

なぜ?だから何?で変わる自分

なぜ判断がブレる? 自分が陥りがちな思考のクセは、一つの視点だけで物事を捉えてしまう点にあると実感しました。そのため、何故そうなるのか、どうしてそうなったのかを考える前に意思決定してしまうことが多く、目的や重要なポイントが抜け落ちることで、判断がブレることがありました。また、その結果、交渉、プレゼンテーション、ファシリテーションなど様々な場面でうまく対応できなかったと感じています。 目的意識ってどう? グループワークでは、他の受講生の多様な意見や考え方を聞くうちに、自分にはない引き出しや視点を持っていることに気づきました。この経験から、今後は問題が起きた際にまず目的を明確にし、必ず「なぜ?」と「だから何?」を繰り返し考えることで、具体と抽象の両面からテーマや本質をしっかりと捉えることを意識したいと思います。 上記の実践を無意識のうちにできるよう努め、より効果的な判断と行動ができるよう目指していきます。

クリティカルシンキング入門

問いから始まる成長ストーリー

何故問いが大切なの? 起こった問題に直面した際、まずはどのような「問い」を立てるかが非常に重要です。この問いの立て方によって、今後の課題解決の方向性が大きく変わっていくと感じました。 どう柔軟に考える? また、自分の過去の経験だけに頼って「考えたい」「考えやすい」方法で解決策を導き出すのではなく、より本質を見極めるための柔軟な視点が求められると思います。特に、お客さまからの悩みや課題に対しても、安易なアプローチに流れることなく、核心を捉える問いを設定することが大切です。 相談はどう進める? さらに、問いを導き出した際には、その目的を明確にするために上司に相談し、意見を仰ぐことが効果的です。解決策を提示する場合は、相手の立場に立ち、数値や見やすい資料を使って分かりやすく説明することを意識しています。そして、相談の際には、設定した問いから離れた議論を避け、常に本質に焦点を合わせるよう努めています。

データ・アナリティクス入門

データ分析で見つける!問題解決への道

データ分析はどう始める? 分析は、比較から始まります。問題の定義やデータ分析の目的を明確にし、データの切り口や分析方法、データの効果的な見せ方、さらには仮説を立てる際に有効なビジネスフレームワークを学びました。 手続きの問題はどう捉える? 手続きのデジタル化率を向上させるためのプロモーション施策を考えることを目指し、どこに問題があるのか、どのように解決するのかを段階的に考えていきます。特に、どの手続きでデジタル化の進行が遅れているのかを把握し、その手続きを行った人のデータを深掘りします。 分析で何が分かる? 具体的なステップとしては、最初に手続きが紙ベースかデジタルかを確認し、次に属性データや過去にデジタル手続きを利用した履歴で分類します。それらのデータを用いて、なぜその手続きが利用されたのか、またはなぜ利用されなかったのかを分析することで、より深い理解や示唆を得ることができるでしょう。

データ・アナリティクス入門

分析の核心に迫る!比較活用の極意

比較の意義は? 分析の核心は、比較にあります。比較を行う際には、対象の選定や条件を統一することが、意義深い分析につながります。また、分析の出発点として、目的や仮説の定義が欠かせません。これらは、できるだけ明文化しておくことが理想的です。 データの見せ方は? さらに、分析結果を伝えるには、グラフやパーセンテージなどで適切にビジュアライズすることが重要です。例えば、自社サービスと競合他社サービスの比較では、自社に有利な形でデータを提示するのが一般的です。また、サービス導入前後の状態を比較し、業務時間の短縮やコスト削減といった導入効果を、定量的に示すことが求められます。 リスクをどう定量? ある程度の定量化を行った提案は既に実施していますが、定量化が難しいと感じられるセキュリティリスクやコンプライアンスリスクの削減についても、納得感のある定量的データとして提示する工夫をさらに進めたいと考えています。

データ・アナリティクス入門

公平な比較で見つける最適解

打ち手はどう選ぶ? 今週は、課題解決のプロセスにおける打ち手、つまりどう取り組むかという部分に焦点を当てました。その中で、2つの案を比較して検証する手法としてA/Bテストについて学んだのが印象に残りました。A/Bテストは、対象となる条件をそろえることで公平に比較できるため、効果的な意思決定に役立つ方法です。 調査パターンはどう確かめる? 実際の業務ではネット販売が少ないため、A/Bテストそのものは行っていませんが、製品の発売前には複数のパターンを設定して比較検討する調査を実施しています。たとえば、味のバリエーションや商品名・コンセプトなど、さまざまな要素について、それぞれのパターンを複数同時に調査することで、目的にかなった最適な方向性を見極めています。今回の学びを通じて、調査目的を明確にする重要性を改めて認識し、今後は目的に沿ったパターン設定をより一層意識して取り組んでいきたいと考えています。

データ・アナリティクス入門

ABテストで磨く実践力

ABテストはなぜ重要? ABテストを正しく実施するためには、まず目的や仮説を明確に定め、比較対象となる条件をしっかり整えることが重要だと改めて学びました。 問題解決はどう進む? また、問題解決のプロセスを順序立てて取り組むことで、何が問題であるのか、どのような仮説が考えられるのか、そしてどのような解決方法を選ぶべきかを体系的に理解できました。マーケティングチームでの売上進捗に関する課題の特定や、適切な打ち手の選択、さらに広告の効果検証など、様々な場面でこのアプローチを活用できると感じています。 多角検討はどうする? さらに、複数の切り口で課題に接近し、必要なデータの洗い出しや抽出方法、そして解決策の多角的な検討を進める過程で、チームメンバーと協力しながら取り組む重要性を再認識しました。今後は、業務の中で意識的にアウトプットの機会を増やし、実践的な成果に結びつけていきたいと考えています。

データ・アナリティクス入門

仮説の種が戦略を育てる

仮説の捉え方はどう? 仮説を立てる際、時間軸と結論の視点で捉えるのか、あるいは問題解決のための手段として捉えるのか、細かく分解できることに気づきました。漠然としていた仮説も、目的と必要な手段を明確にすることで、より効果的かつ実践的なものに仕上げることができると学びました。 本当に必要な策は? 売上向上を目指す中で、「何が必要か?」という曖昧な問いだけでは、的確な戦略が立てられないという経験があります。そのため、問いを細分化し、一つ一つの要素に対して仮説を立て検証することが重要だと実感しています。 現状分析の手法は? 具体的には、まず自部署の業務範囲における現状の顧客アプローチ方法を洗い出し、効果があるものとそうでないものをデータに基づいて検証します。その上で、検証結果を踏まえて問題解決のための仮説を構築し、ボトルネックとなっている部分の改善策を検討していく手法を実践しています。

「目的 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right