データ・アナリティクス入門

データ比較で見える改善のヒント

データ分析に何を学んだのか? データ分析とは、比較することが重要であると学びました。特に、異なる要素を比較する際には、同じ条件下で行うことが大切です。また、周囲に結果を共有する際には、グラフを活用して直感的に理解できるアウトプットを作成する工夫も必要です。 クライアントのフィードバックはどう活かす? 私はサポート業務を担当しており、クライアントからのフィードバックをアンケート形式で収集しています。昨年との比較や、NPSとドライバー項目の相関を分析することで、組織の強みや弱みを明確に把握し、課題を抽出して解決に向けたアクションを実施していきたいと考えています。 定性的なデータの課題は? これまで、フィードバックから得られるのは定性的なデータのみで、昨年との比較やスコアが低下した理由の分析が不足していました。今後は、これらの点を深掘りできる力を身に付けたいと思います。

リーダーシップ・キャリアビジョン入門

意識から始まる本当のリーダーシップ

氷山モデルって何? 今週の学びで一番印象に残ったのは、氷山モデルの仕組みです。行動はその人の意識が外に現れてこそ確認できるものであり、まず自分の意識が出発点となることを強く感じました。また、目標実現のためには能力の向上も不可欠であると実感しました。 伝え方はどうする? 私は営業職に従事しており、年度変わりの時期に新たな方針が示されても、ただ部下に伝えるだけでは大きな成果は得られないと考えています。自らリーダーシップを発揮し、作業の目的や意義を積極的に伝えることが重要だと思いました。 目標達成の計画は? そのため、4月に半月ごとの振り返りミーティングを設定し、重要な項目について改めて推進の意義を話し合う予定です。さらに、半期目標達成のためのロードマップを作成し、自分が目指す理想のリーダー像についてもオープンに共有することで、周囲に自分のビジョンを示そうと考えています。

データ・アナリティクス入門

洞察が導く実践の軌跡

ABテストの注意点は? ABテストは、広告制作や新商品のパッケージ調査など、クリエイティブの評価でよく用いられる手法です。実際の業務で使用していたためなじみがありましたが、条件を揃える部分で見落としがちな点があるため、実践時は特に注意しなければならないと感じました。 打ち手比較の意義は? また、打ち手の比較に関しては、単なるデータ分析にとどまらず、業務上の課題解決のための思考パターンとしても応用可能だと実感しました。物事の意思決定における「比較」は、非常に重要なプロセスであると改めて認識しました。 課題継続検証は? 業務では常に課題が発生するため、まず現状を把握し、比較のためのデータを精査しながら継続して検証することが重要だと考えます。さらに、プロセスを細分化して仮説を立て、実際に試していくというルーティンを、どの状況においても意識して取り組んでいきたいと思います。

クリティカルシンキング入門

生の声に迫るナノ単科学び記

視覚化は混乱を招く? グラフや文字を活用した視覚化は、伝えたいメッセージを効果的かつ分かりやすく相手に届けるための有力な手段です。しかし、目的や意図を定めずに形式だけを並べたり過度に使用したりすると、かえって受け手に混乱を招く恐れがあります。 スライドは目的通り? そのため、作成するスライドにおいては、伝えたい内容や目的に合った適切な表現方法を慎重に選ぶことが重要です。視覚的な要素を取り入れる際も、書面の構成と同様に、受け手に伝わりやすいよう論理的に整理された内容であることが求められます。 日常文書に工夫は? また、この考え方は、日々の技術文書やメール、チャットでのコミュニケーションにも活かすべき基本姿勢です。常に相手が誰であるか、何を伝えたいのか、そして相手にどのような行動を期待しているのかを意識しながら、最適な視覚化と文章構成を心がけていくことが大切です。

データ・アナリティクス入門

ロジックの先に見えた未来

MECEの意義は? 問題解決の過程でロジックツリーを活用する中、MECEの考え方が重要だと改めて実感しました。MECEとは、ある事象を「モレなくダブリなく」整理する手法ですが、その「モレなくダブリなく」を必ずしも厳密に適用するのではなく、切り口の感度を重視することが肝要だと感じました。 分類の工夫は? また、分類の際に「その他」を使う場合や、意味のある切り分け方のポイントについても再確認できました。こうした知見を基に、今後も状況に応じた最適なロジックツリーの構築に努めたいと思います。 ギャップ解消の策は? さらに、業務では常に計画とのギャップに注目し、数字や傾向を正確に掴む必要があります。現状の進め方が本当に正しいのか、ありたい姿に対して適切かどうかを再検証し、長期的な視野に立ってデータを分析しながら、ギャップ解消に向けたアクションにつなげていきたいと考えています。

クリティカルシンキング入門

視点を切り拓く、学びの瞬間

視点をどう意識? クリティカルシンキングとは、自分自身や他者に思考の癖があることを前提に、視点・視座・視野の三つの観点を意識しながら考えを変えていく手法です。具体的には、まず「何を見ているのか」という視点、「誰の立場で考えているのか」という視座、そして「どこまで物事を考えているのか」という視野を順に用いて、思考の習慣を改善していくことが求められます。 何を判断すべき? また、問題と論点の違いを明確に理解し、単に何が起きているのかではなく、何を判断すべきかを意識する視点を養うことも重要です。これまで学んできた知識を、日常業務で扱う月次資料やKPI報告と照らし合わせることで、各資料がどの意思決定を支援するためのものであるかを整理する意識を持つよう努めています。 数字にどんな問い? さらに、数字の違和感に気付き、そこから問いを立てる姿勢を身につけることを目指しています。

データ・アナリティクス入門

目的と仮説で磨く分析力

比較対象は同条件? 分析においては、比較対象が本当に「apple to apple」になっているかを確認する重要性を学びました。各要素が同一条件下で比較されているかをしっかりと検証することで、正確な分析に結びつくと感じています。 目的と仮説は明確? また、ある事例をもとにしたグループディスカッションを通して、データ分析に入る前に「目的」や「仮説」を明確にすることの大切さを再認識しました。これらが十分に整えられていないと、分析のアウトプットに本来の意図が反映されず、効果が薄れてしまうことに気づきました。 外部環境の整理は? さらに、外部環境分析や企業分析に取り組む際は、まず自らの分析の目的を整理し、仮説をしっかりと組み立てるプロセスを徹底する必要があると感じています。この手順を着実に実行することで、分析の質が向上し、業務全体での活用がより一層進むと確信しております。

クリティカルシンキング入門

データを活かす!伝える力が磨かれる瞬間

伝え方はどうする? 伝えたいことをしっかりと理解することがまず重要です。そのうえで、自分と同様に情報を理解してほしい相手に対して、どのように表現すれば伝わりやすいかを考え、工夫して可視化します。重要なのは、伝えたことではなく、伝わったことが伝えたことと考え、どのように伝えるかを思考することです。 データの視点を変える? アンケートやデータを目の前にし、それを社内メンバーに共有するとき、一つのデータでも見る角度を変えてみることで、より理解を深めることができるかもしれません。そこで、ひと手間工夫をかけてみようと思います。 提案で納得できる? 自分でデータを取り扱う場面だけでなく、データを提供してくれる人に対しても、「このような切り口や見せ方ではどうか」と提案やアドバイスを行いたいと思います。これにより、より多くの人が情報を理解し、納得することができればと考えています。

アカウンティング入門

設備投資で学ぶ!財務と生産性の両立とは

融資条件に疑問ありますか? バランスシートの基本を再確認しました。銀行から融資を受ける際には、事業計画書が必要だと考えていましたが、不動産の担保があれば融資を受けられることを確認しました。無借金で経営することが理想だと考えていますが、機会損失との兼ね合いも重要です。 研究所の実態は? 私の部署は研究所であり、内部留保や借金の概念が直接絡むことはありません。そのため、今回の学びをそのまま活用するのは難しいと感じています。しかし、毎年行われる設備投資要求では、総資産利益率(ROA)を意識して必要な設備を選定しています。 投資の評価はどう? 生産性向上のための投資は様々に考えられます。例えば、PCや実験装置の買い替えです。総資産利益率(ROA)の向上に寄与するかどうかが鍵となります。また、ROA向上のインパクトを大・中・小と評価し、必要な設備投資を上司に要求しています。

リーダーシップ・キャリアビジョン入門

価値観が描くキャリアの未来

価値観の違いは? これまでの学習で、価値観は人それぞれであることを実感し、チームメンバーそれぞれのキャリアアンカーを理解することが、適切な声かけや指導に大いに役立つと感じました。 ギャップ埋めはどう? また、現実と理想の間にあるギャップを埋めるためには、キャリアサバイバルの手法を取り入れることで、論理的かつ効率的に物事を進めることができると思います。 普段の対話はどう? 自分を含めたチームのメンバーが何を大事だと考えているのかを知るには、普段のコミュニケーションが非常に大切です。そのため、今後はこれまで以上に積極的にコミュニケーションの機会を増やし、必要に応じてキャリアアンカーの分析も実施していきたいと考えています。 キャリア再確認は? その上で、自分自身のキャリアをしっかりと把握し、組織とのニーズがずれていないかを改めて見直すことが重要だと感じています。

データ・アナリティクス入門

仮説力が拓く学びの世界

仮説の基本って何? 「仮説」とは、ある論点に対する仮の答えであるという基本から学びました。目的に沿った仮説を立て、必要に応じて複数の仮説を検討することで、網羅性を持たせる手法が重要だと実感しました。 分類で何が見える? また、仮説は目的に応じて「結論の仮説」と「問題解決の仮説」に分類できるという点に注目しています。こうした考え方を取り入れることで、仕事の検証マインドが向上し、説得力も増すことを感じました。さらに、ビジネスのスピードや行動の精度を上げる効果にも期待が持てます。 戦略にどう活かす? 実際に、分析したデータをもとに売上傾向や市場トレンドを踏まえた仮説を立てることで、戦略を具体的に策定できる点に意義を感じています。複数の視点から仮説を立てることで、より多角的な分析が可能になるため、さまざまな場面で仮説の精度を向上させる取り組みが非常に有効だと考えています。

データ・アナリティクス入門

グラフで解く学びの秘密

データ表現はどう? 数値だけではバイアスや誤読が起きやすいと改めて感じました。適切な表現方法でデータをビジュアル化することで、データの中身や意味への理解が深まると実感しています。また、幾何平均や加重平均の計算方法を再確認するとともに、有意差95%に関する知識も大きな学びとなりました。 グラフってなぜ大切? 根拠を示したり相手と共通認識をもつためには、グラフやその他のビジュアル表現が重要です。プレゼンテーションで用いるだけでなく、自分自身がデータ内容をより深く理解するためにも、積極的にビジュアル化を活用していきたいと思います。 営業でどう伝える? 今後、営業成績や契約管理など、数値管理が重要な業務において、ビジュアル化は全員の共通認識を促す有効な手段となるでしょう。また、営業現場においても、説得力を高めるために、数字とグラフの可視化をうまく活かしたいと考えています。
AIコーチング導線バナー

「重要」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right