データ・アナリティクス入門

多視点比較で広がる学びの世界

比較の意義は? 分析の要点は、比較にあるという点が非常に印象深かったです。動画と同様に、特定の企業を導入するという目的が先行しがちで、その情報をもとに比較対象を探すことが多かったため、ディスカッションを通してさまざまな視点が存在することを学びました。今後の学習では、固定概念にとらわれず、他の選択肢についてもしっかりと検討することが必要だと感じています。 異なる視点は? また、前述の通り、導入の目的が一方に偏る傾向があったため、別の視点も重要であると再認識しました。自分自身の考えだけに依存するのではなく、異なる問題意識や視点も考慮しながら、比較を進める際に他の検討要素がないか常に意識するよう努めたいと思います。 検証はどうする? さらに、提案時にはイシューを軸にして比較の正しさを検証し、どのグラフが正確な情報を伝えられるかを熟考することが不可欠だと感じています。ブレインストーミングで生成AIを活用し、他の視点が得られないか確認すること、そして上司にこまめに相談して要点に漏れがないかチェックする姿勢も大切だと実感しています。

リーダーシップ・キャリアビジョン入門

対話で拓く変革リーダー

コミュニケーションはどう? 総合演習では、仕事の中で都度コミュニケーションを図ることの重要性を改めて実感しました。今後も、チームで取り組む際にはしっかりと話し合い、認識を合わせながら進めていきたいと感じています。 変革の意識はどう? キャリアについて振り返ると、これまでの業務の中で結果を出し、「自分が何かを変える」という意識を大切にしてきたと実感しています。前任のやり方にただ従うだけでなく、自ら爪痕を残し、良い意味で目立つことにこだわる性格だと感じています。 リーダーの対話はどう? また、リーダーシップにおけるコミュニケーションは、現部署や全社プロジェクトにおいても大いに活用できると考えています。これまで意識して行動してきた部分もありますが、これからも引き続き積極的にコミュニケーションを図る努力を続けていきたいと思います。 新部署での挑戦は? 現在、ある部署で働き始めたばかりですが、今までの経験を活かし、様々なアイデアを出して行動に移すことで、「自分が変えてきた」という成果をたくさん生み出していきたいと考えています。

クリティカルシンキング入門

データが語る組織の新しい一面

データ加工で新たな発見をするには? データを加工することで、その特徴を理解できるようになります。最初は特徴がないように見えるデータでも、分解して可視化することで新たな特徴を発見できます。分解する際には、MECEを意識して多くの観点からアプローチすることが重要です。これにより、データの特徴をより深く理解することが可能になります。 組織の稼働状況をどう可視化する? 私は組織の稼働状況や勤怠状況を可視化する業務をよく行っています。しかし、データの切り口を考える際には、目の前の情報だけに頼ってしまうことが多いです。今回の学習を通じて、切り口を言語化し、応用するための新しい視点を得ることができました。 データ分析に重要な視点は何? データを分解する際には、When、Who、Howを意識して、多くの切り口をまず検討することが重要だと感じました。組織メンバーの業務の偏りを分析する際、これまでは組織毎や案件毎といった切り口で見ることが多かったですが、今後は役割ごと、入社年次ごと、グレードごとなど様々な切り口も加えて分析を行ってみようと考えています。

クリティカルシンキング入門

1スライド、1メッセージの魔法

グラフ選びはどうする? スライド作成においては、単に好きなグラフを使うのではなく、伝えたい意図に合わせたグラフを選ぶことが大切です。語り手が強調したいメッセージ(たとえば、順調な増加など)をしっかりと込め、読み手に伝わりやすい順序で情報を配置します。さらに、重要な部分は色や矢印を利用して強調し、視覚的に訴える工夫を施しています。 伝え方はどう整理? また、動画でのお客さんへのセールス、講義、ステップ配信のシナリオ作成、セールスレターによる長文の配信、さらにはお客さんへの定期コラムの作成といったさまざまな場面で、これらの手法が活用されています。どの場面においても、伝えたいポイントを端的にまとめる「1スライド1メッセージ」の原則が生かされています。 論理の整合性は? ただし、表現力に自信が持てる一方で、その裏側にあるロジックの安定性には改善の余地があります。この章で学んだ分かりやすい表現をより効果的にするためには、事前のロジックツリーやピラミッドストラクチャーを徹底し、情報の整理と論理の一貫性を確保することが今後の課題と言えるでしょう。

データ・アナリティクス入門

考える力を広げる3C4P活用術

フレームワークの効果は? ゼロベースで仮説を立てるより、フレームワークを用いることで視点が広がり、仮説の網羅性が向上すると感じました。これまでは感覚に頼ってひとつの答えに固執することが多く、思考が止まる場面もありました。しかし、実践演習では3C4Pを活用することで、問題に対して一歩踏み込んだ考察ができるようになりました。 データ収集の意義は? また、仮説検証においては、自分に都合の良いデータだけでなく、比較のための情報を収集する重要性を学びました。反対意見を含む情報をも集めることで、仮説の説得性が高まりました。提案する側とされる側では視点や優先順位が異なるため、複数の仮説を持つことが必要だという考えにも納得できました。 目的と結論の整理は? さらに、仮説には問題解決だけでなく、目的や時制で整理される結論の仮説があることを知りました。問題解決のプロセスであるWhat、Where、Why、Howという問いは、日々の目標設定において部下との面談で活かされ、お互いに何が問題で何に取り組むかを具体的にすり合わせることができたと実感しています。

戦略思考入門

ナノ単科で実感する経済の秘密

規模経済を探るのは? 本講座を通じて、まず「規模の経済性」について学びました。固定費と変動費の分析を正確に行わないと不経済に陥る可能性があるため、コスト構造の把握が非常に重要であると実感しました。 習熟進展はどう考える? 次に「習熟効果」に関して、累積的な生産性の向上がコスト削減に寄与する一方、経験や知見が一定の段階に達すると効果が薄れる可能性があるという点を学び、業務改善のタイミングを見極める大切さを感じました。 範囲効果は何か? また「範囲の経済性」では、既存の資源を他の事業にも活用することで、個別に行う場合よりも効率的にコストを削減できることに気づかされました。技術投資のシナジーを活かし、新規事業の検討につなげる視点が印象に残りました。 ネット未来はどう? 最後に、「ネットワークの経済性」については、参加者が増加するほど利便性が向上し、実際のフィードバックが大きな効果を生む仕組みがあることを学びました。現状、SNSなどの活用が十分でないため、今後の展開に向けてネットワーク利用の検討が必要だと感じました。

データ・アナリティクス入門

チームで切り拓く未来への一歩

データ検証の意味は? データを検証し、仮説を立てた上で再びデータを確認する―リスクを抑えながら新たな可能性を模索する問題解決のプロセスについて学びました。その中で、A/Bテストの活用についても知ることができました。 実践規模の見極めは? 仕事に活かす方法として、プロセスをどの規模で実施するかが、データ抽出の視点や意思決定の重要度によって左右される点に気付かされました。企業の規模によっては、実行が難しい場合も出てくると感じました。 チームでの一歩は? そこでまずは、自分のチーム内で進められる範囲から取り組んでみようと思いました。 チーム育成のポイントは? チーム内での人材育成プロセスに、データの検証と仮説の立案を取り入れ、今後の計画に反映させたいと考えています。近年、チームメンバーとなる人の出身部署が多様化しているため、前提となる知識やその特性にも違いが出ていると感じます。これにより、それぞれの出身部署や知識の有無を的確に把握し、最終的には一人前のチームメンバーとして成長するプロセスを、より効率的に進めたいと思います。

データ・アナリティクス入門

分解思考で掴む改善のチカラ

原因分析はどう進める? 原因の分析にあたっては、まずプロセスごとに分解し、確認することが大切だと感じました。特に「what/where/why/how」を意識し、まず「where」から入念に分析することで、その後の「why」や「how」の解像度が高まると理解しています。 A/Bテストってどうやる? また、A/Bテストが有効な手法であることを学びました。その際、検証する「要素」は極力少なくし、その他の条件は共通とすることで、スコープを狭めることが重要だと感じました。実際にアプリ上でプッシュ通知とバナーを用いたA/Bテストを実施した経験から、振り返ると「キーメッセージ」に差が生じてしまった点が課題として残りました。 ログイン改善は何が? さらに、アプリのログイン率向上を図るため、ログインに至るフローを細かく分解し、原因の追究を行いたいと考えています。特に、パスワード設定の箇所で離脱するユーザーが多いという仮説に基づき、検証からスタートする予定です。その後の改善策として、ユーザーインタビューやUIテストの実施を検討しています。

リーダーシップ・キャリアビジョン入門

納得で進む挑戦の毎日

目標意義はどう伝える? 目標を設定する際は、成功基準を明確にするだけでなく、その目標に込められた意義についても自分自身で納得することが重要です。達成しなかった場合には誰が困るのか、あるいはどのように会社や社会に貢献できるのかを考えることで、目標への意欲が高まります。また、計画策定の際には6W1Hの視点を取り入れ、これをチェック項目として活用することで、論理的かつ具体的な計画を立てることが可能になります。 依頼内容は伝わる? 仕事を依頼する際は、依頼された本人が内容や目的を十分に理解し、わかった、できる、やりたいという状態になっているかを確認することが大切です。特に、複数のタスクを同時に抱えている場合は、新たな仕事に対して「できる」というイメージが持ちにくくなります。そのような場合には、タスクを分解し、他の人に委譲できる部分を整理することで、作業の遂行がしやすくなります。さらに、期初に共有した目標については、具体的な達成基準に加え、その意義をメンバーの成長や会社への貢献と関連づけて改めて説明することが、全体のパフォーマンス向上につながります。

データ・アナリティクス入門

5W1Hで開く業務改善の扉

数字はどう生かす? 問題を把握する際には、勘や経験だけでなく、定量的な数字と各工程における「いつ」「どの業務が」「なぜ」「どのように」という観点でステップごとに整理することが大切だと実感しました。この考え方により、現状を正確に把握し、その情報を基に仮説を立て検証することで、具体的な解決策を見出すことが可能になります。 現状をどう読む? 業務改善においては、まず現状を正確に捉えることが必須です。各作業工程を定量的に整理し、5W1Hのフレームワークで状況分析を行います。ただし、数字だけでは捉えられない部分もあるため、現場へのヒアリングを通じて、数値との整合性を確認することが求められます。 仮説はどう進む? また、現状の正確な把握を前提に、仮説を立てて検証を重ねるプロセスが重要です。仮説策定にあたっては、現場担当者の感覚も加味し、実際の状況に即した検証を行うことで、机上の空論に終わらないよう努めています。さらに、最近学んだマーケティングの考え方を活かし、実際の行動パターンや離脱ポイントに注目しながら改善策を検討していきたいと考えています。

デザイン思考入門

本当の課題はユーザーの声にあり

導入の不安は何? AIなどの新しい技術を自社の業務に導入する際、最適な方法が明確でないことが多く、適当な仮説に頼るだけではユーザーのニーズを十分に捉えられず、導入がうまくいかない事例があると感じました。観察やインタビューを行い、ユーザーが直面している本当の課題を定義することが、根拠に基づいた施策の展開につながるのではないでしょうか。 事前準備は十分? ただし、観察やインタビューを最初に実施する際、聞く内容があらかじめ決まっていないと十分な情報が得られないのではないか、という懸念もあります。一方で、こちらが求める回答にユーザーを誘導してしまう危険性もあるため、フラットな立場でユーザーの本音を引き出し、客観的に分析するプロセスが不可欠だと考えます。 ユーザー視点は大事? 特に、共感を基盤とした課題定義の段階では、ユーザー中心の視点が非常に重要です。業務においては、新しい技術やソリューション自体に焦点が当たり、答えあたりの議論に陥りがちですが、常に解決すべきはユーザーの本質的な課題であることを念頭に置き、施策の検討を進めたいと思います。

データ・アナリティクス入門

分解で見えた解決のヒント

進行中の問題は何? プロジェクトの進行において問題が発生した場合、まずはプロセスをできるだけ詳細に分解し、ボトルネックを見つけ出すことで原因を明確にし、解決策の糸口を探していきたいと考えています。 複数原因はどう整理? 一方で、原因が複数存在する場合には、さまざまな対策案を検討する必要があります。実際の業務ではA/Bテストの実施が少ないかもしれませんが、実施する際には1要素ずつ、できる限り条件を揃えて行うことを心掛けたいと思います。 全体像はどう掴む? また、問題の原因を探索する際には、プロセスを細かく分けることでボトルネックに注目し、問題の全体像を把握するよう努めます。 評価基準は納得? さらに、解決策を検討する場合は、適切な判断基準を設定した上で各案の評価を行います。その際、判断基準の重要性や重み付けについても十分に考慮しながら進めることが重要だと考えています。 A/Bテストはどう実施? A/Bテストについては、条件を一致させた上で1要素ずつ実施するようにし、比較が効果的に行えるよう留意していきたいと思います。

「重要」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right