マーケティング入門

伝わる商売の極意―顧客視点の力

マーケティングの意味は? マーケティングの基礎を体系的に整理することができ、セリングとマーケティングの違いや「顧客志向」の重要性を改めて実感しました。単にモノを売るのではなく、「誰に売るのか」「何を売るのか(どの部分を強調するか)」「どのように売るのか(どのように伝えるか)」の3点を徹底的に洗い出すことが、顧客による価値創造―ヒット商品の実現―に繋がるという理解に至りました。 顧客対応はどう見る? また、商品やサービスの販売に留まらず、他者との関わり全般においてもマーケティングの考え方は十分活用できると感じています。例えば、自身が担当するバックオフィス業務では、社内のやり取りを一種の顧客対応と捉え、ペインポイントやゲインポイントの追及、新しい書式やフォーマットの共有の際に「イノベーションの普及要因」を意識することで、混乱を防ぎ、伝えたい内容がより効果的に伝わると実感しました。特に、今後は「わかりやすさ」と「試用可能性」を意識して取り組んでいきたいと考えています。 分析で何が分かる? また、STP分析、4P、6Rといったフレームワークの型や活用方法、順位付けについて学びましたが、まだ表層的な知識であるため、まずは実際に活用することで理解を深めていくつもりです。新規の移管事業においても、口コミの感情分析などを通してペインポイントの抽出や競合分析にマーケティングのアプローチを積極的に取り入れていく予定です。

クリティカルシンキング入門

シンプルに伝える文章の力

日本語の使い方は? 相手に分かりやすく伝えようと努めていたつもりでしたが、日本語の使い方に改めて課題があると感じました。今後は、主語を一つに絞り、述語がその主語に確実に対応するよう心がけ、文章も簡潔にまとめていきたいと思います。 根拠はどう考える? また、主張を伝えるための根拠の組み立て方として、抽象的な柱から徐々に具体的な内容へと展開していくステップを学びました。しかし、伝えたい相手の立場や状況によって興味や関心は異なるため、相手の視点に立った根拠づけが非常に重要だと感じています。 学びを生かすには? このような学びは、日常のコミュニケーションや資料作成といった様々なシーンで活かせると考えています。たとえば、伝えたい内容をピラミッドストラクチャーで整理し、主語と述語を意識した簡潔な文章を心がけることで、相手に伝わりやすくなり、結果として相手の理解負担だけでなく、自分自身の伝える負担も軽減できると思います。 文章チェックは? 具体的には、メールやチャットなどの文章コミュニケーションにおいては、①主語と述語の関係が正しいか、②文章ができるだけ簡潔にまとめられているか(文が60文字以内を目安にする)、③相手の立場に立った内容になっているか、という点を常に確認していきたいです。また、資料作成の際には、ピラミッドストラクチャーを用いて思考を整理し、論理構造の妥当性をしっかりと確認することを意識します。

クリティカルシンキング入門

グラフと装飾の新発想で資料改善!

グラフ選びの理由は? グラフの選び方について、これまでは感覚的に選んでいましたが、今回の講座で得た知識との差異はありませんでした。しかし、具体的に「このような場合はこのグラフを選ぶ」という言語化ができていなかったため、今後は理由を持ってグラフを選びたいと考えています。 文字装飾の見直しは? 文字装飾の選び方についても学びがありました。装飾は「付け足す」のではなく、「削る」ことが重要だということです。学生時代に、赤字や太字、下線で強調した際に「やりすぎだ」と言われた経験もあり気を付けていましたが、特にタイトル位置では装飾が不要であるという点は新たな学びでした。 報告資料の工夫は? 分析データの報告時にこれらの知識を活用したいと考えています。普段は分析データに触れない他部署の人に報告資料を送ることがありますが、ここで適切でないグラフが使われていたり、全体の構成が不明確だったりすると、受け取る側が混乱してしまいます。そのため、「何を伝えたいか」に焦点を当てて資料を作成していきたいと思います。 発信方法の確認は? 具体的には、次のような行動を心掛けたいです。まず、伝えたい目的やメッセージを明確にし、その次に、どの順番で何を並べるかスライド全体の構成を考えます。そして、必要な文や適切なグラフを配置し、補足や強調は最低限に留めます。最後に、読み返しながら、伝えたいことが相手に無理なく伝わるかを確認します。

戦略思考入門

「捨てる判断で顧客満足度アップ!」

捨てる判断の本質は? 実践演習で最も印象に残ったのは、「捨てる判断」を明確化することでした。目的や指標、課題、そして自身がかけた工数など、さまざまな視点から判断をする重要性を学びました。これまでは工数ばかりが判断基準でしたが、工数がかかっても必要なこと、逆にかからなくても不要なことを見極める必要性を認識しました。この理解が不十分だったので、大変勉強になりました。また、不要なものを捨てることがかえって顧客の利便性につながることも参考になりました。過去の惰性で物事を増やすのではなく、根拠を持って捨てることの重要性を学んだのです。 定量行動の意味は? 今後の企画立案では、この学びを特に意識して取り組んでいきます。特に、定性ではなく定量を意識して行動することが重要です。効率的・効果的に目的を達成するためには、定量的な判断が不可欠です。この判断は、さらに投資をする価値があるのか、あるいは捨てるべきか、方法を変えるべきかという貴重な基準になります。これを意識しながら行動していきます。 効果的実践のステップは? 実践に向けたステップとして、目的や方針の確認、情報の掘り下げ、定性的内容を定量化すること、現状の成果と課題の把握、時間軸をベースとした成果の評価、そして課題解決に向けた優先順位付けを行っていきます。さまざまな選択肢が出てくることも予想されますが、周りの意見も参考にしながら計画を策定していきます。

リーダーシップ・キャリアビジョン入門

ふたつの関心軸で変わるコミュニケーション

マネジリアルグリッドとは? マネジリアルグリッドという概念について初めて知りました。「人間への関心」と「業績への関心」の2つの軸に分けて考えると、確かに理解しやすいと思います。コミュニケーションがうまくいかないと感じるときには、この関心の軸が異なっているのかもしれないと感じました。業務中はどうしても「業績への関心」に比重が大きく傾きがちかもしれませんが、私自身は「人間への関心」に寄っていると思います。両軸とも大切にしたいと感じています。 MBOにおける環境要因とは? 次に、環境要因と適合要因の視点から、直近の目標設定(MBO)でメンバーへの支援の準備を進めたいと思います。対象者の経験や知識スキルの把握、そして組織やチームの方向性や状況を整理して、その上で主に支援型のアプローチを考えていますが、達成志向型のアクションも忘れずに取り入れていきたいです。 タレントマネジメントの活用法は? 具体的なアクションとしては、まずはタレントマネジメントを活用して対象者の情報を把握します。スキルについてはある程度把握できると思われます。また、リーダー陣の会議を通して、組織の課題や方向性を理解することが重要です。組織再編があったばかりなので、この点が特に重要です。そして、定期的な1on1の機会(現在は月1回)を利用して、対象者のバックグラウンドを知り、キャリアプランを描きつつ、明確なゴール設定を目指したいと考えています。

データ・アナリティクス入門

視野を広げる学び方の発見

学びの振り返りはどのように? これまでを振り返り、学びを得たことを自分の言葉で再度まとめることができる場があり、復習に繋がりました。また、リアルタイムでの講義には参加できなかったものの、自分一人で考えるだけでは視野が狭くなる可能性があるため、参加できなかったことが悔やまれます。 分析のストーリーが重要? その中でも特に印象的だったのは、スライドで示された「やみくもに分析しない。ストーリーが大事!」という点です。傾向をつかみ、特に見るべき箇所を明らかにし、網羅的にデータを収集して分析することの重要性が強調されていました。これにより、言語化・教訓化・自分化が進められると感じました。 自己研鑽と業務改善のステップは? 学習方法については、自身の癖を認識しているため、現在バイアスに押し負けないように自己研鑽に励みたいと思います。特に、問題解決が業務の中心であるため、そのステップに基づいて業務を進めたいと考えています。また、過去の経験則で決め付けることが多い内部問題の洗い出しと改善にもつなげていきたいです。 業務指標の整理はどうする? さらに、毎月提供される業務指標が様式も保管場所もその時期もまばらであり、単体に存在している現状があります。これを単体で取り扱うのではなく、日々起きる問題に備えてまとめておくべきだと感じました。目的に合わせて必要なデータをいつでも引き出せるように整備しておきたいと思います。

データ・アナリティクス入門

問題解決力を向上させる仮説の立て方

仮説設定の重要性とは? 問題解決プロセスにおける「why」(原因分析・追究)や仮説について学びました。特に重要なポイントは次の2点です。 1. 仮説は複数立てること: - 「Aである」だけでなく、「Bである可能性」や「Aではない可能性」など、さまざまな仮説を立てて決め打ちしないこと。 データをどう活用する? 2. 仮説同士に網羅性を持たせること: - データを評価する際、「何を見れば良いのか」「何と何を比較すれば良いか」「意図をもって何をみるか」といった視点を持つことが重要です。 - 仮説を確定させるためのデータだけでなく、「比較するための」データ収集も忘れてはいけません。 - 関連性のあるデータをより多く集めて分析することで、意思決定の精度が高まります。 進捗管理にどう活かす? この学びは、個人の事案対応力(受付件数と解決件数)や進捗が早い人・遅い人の原因追究(最終的には対策まで)に活用できそうです。日々の進捗管理と並行して、個人の適正業務量や対応方法の評価を行い、現行の運営が正しいかを検証するのに役立ちます。 業務適正の客観評価が必要? 現状を定量分析し、意図的に仮説を持って原因追究を深めることで、より良い業務推進力を発揮させるための手立てを見つけたいと考えています。担当者個人の特性を一旦置いて、より客観的に業務の適正さを評価することが必要だと感じました。

クリティカルシンキング入門

フラットな視点が拓く未来

データの説得力は? データに基づいて論理的に導き出された方策には、数ある手法の中でも特に説得力があり、実践する際に効果が期待できると感じました。 本質はどこにある? チームで分析を進める際、議論が拡散して本来の問いを見失わないよう、得られた事実に対して丁寧に目を向けることが重要だと実感しました。実際の業務では、頭の中にある既定の原因や方策にとらわれず、フラットな姿勢でデータと向き合う意識を持つ必要があると感じています。 仮説の進め方は? また、全ての要素を網羅的に分析し、一つひとつ順番に確認する方法は非効率であるため、仮説を立てた上で優先順位を意識しながら進める手法の重要性を改めて認識しました。 満足度の裏側は? 年に一度、事務局を務める競技会の満足度アンケートを通じ、数値では明確に分解できないフリーコメントを整理・分類することで、参加者の満足や不満を体系的に把握することに努めています。その結果からイシューを特定し、真の原因へアプローチする方策を検討する意識が養われました。 チーム視点は整う? さらに、日常業務においても、チームメンバーとイシューに対する視点を合わせ、要素を丁寧に分解することが大切だと考えています。問いかけを通してメンバーの意見を引き出し、原因や方策を決めつけることなく、常にフラットな視点で課題に向き合う姿勢を心がけたいと思います。

データ・アナリティクス入門

ロジックで拓く成長の一歩

何故手順を明確に? これまで「何となく」で進めていた問題解決のステップについて、今回あらためて「What, Where, Why, How」を意識する重要性を実感しました。手順を明確にすることで、全体の流れが整理され、取り組みがより効果的になったと感じます。 現状のギャップは? また、日常業務においてしばしば指摘されるように、「あるべき姿(目標)」と「現状」とのギャップが課題であるという考え方は、自分自身の問題発見力の不足を強く意識させる要因となっています。全体的な視点で課題を捉えたつもりでも、見えていない問題が存在する可能性があるため、ロジックツリーやMECEといったフレームワークの有用性を改めて認識しました。 遅れはどう取り戻す? 実際、現状では採用目標(ありたい姿)に対して採用実績が未達の状況です。今月である第3四半期が締まり、来月から第4四半期に入るため、これまでの遅れをどのように取り戻すかについて、ロジックツリーやMECEを活用して具体的な施策の検討に結びつけたいと考えています。 どんな課題に挑む? 具体的には、以下の点について課題を追求していきます。 ・母集団形成がうまくいっていないため、応募を阻害している要因や、求人票を見ても応募に至らない理由の究明 ・先月と比べて書類選考通過率が大幅に低下しているため、不合格となる要因の分析 ・面接実施率を向上させるための施策の検討

データ・アナリティクス入門

仮説で拓く学びの冒険

仮説の定義は? 仮説とは、ある論点に対する仮の答え、または分からない事柄に対する暫定的な解答です。これには「結論の仮説」と「問題解決の仮説」の2種類があり、各仮説は過去、現在、未来という時間軸によって内容が変化します。 複数視点の意義は? 仮説を立てる際は、決め打ちせずに複数の視点から検討することが重要です。異なる切り口で仮説を構築し、各仮説に網羅性を持たせるよう意識しましょう。 問題解決の手順は? 問題解決のためには、「What(問題の明確化)」「Where(問題箇所の特定)」「Why(原因の分析)」「How(解決策の立案)」という4つのステップに沿って進めると効果的です。 仮説活用のメリットは? 仮説を正しく活用することで、各自の検証マインドが向上し、説得力が増すと同時に、ビジネスのスピードや行動の精度の向上が期待できます。これまでの経験則や直感に頼るのではなく、ゼロベースで思考し、決め打ちせずに複数の仮説を検討することが求められます。 多角的分析は効果的? まずは、3Cや4P分析を用いて多角的に仮説を立てることから始め、ヒト・モノ・カネといった様々な切り口で網羅性を意識することが大切です。実践の際には、一つの仮説に固執してデータ収集に走るのではなく、複数の視点から検証を重ねることで、比較対象との条件を同等に保ちながら分析を進め、精度の高い答えに導くことが期待されます。

データ・アナリティクス入門

振り返り文に最適なタイトルは以下の通りです: 「フレームワークで広がる仮説の世界」

--- 仮説構築の新たな視点を得るには? 複数の仮説を持ち、複数の切り口を持つ重要性を改めて実感しました。その仮説を考える際にフレームワークを活用できる点は新たな気づきでした。マーケティング戦略を考える際の4Pフレームワークを使うことで、偏りのない仮説を構築するのに役立つことを実感しました。これにより、今後の仮説構築の幅を広げることができると感じました。 戦略フレームワークを業務でどう活用する? さらに、3C、PEST、5Forcesなどの戦略フレームワークも活用できるのではないかと考えています。実際の業務で各フレームワークを使い、仮説構築を試みるつもりです。 四半期を営業1タームで動かしているため、週次での分析やアクションが求められる環境にあります。分析の機会は多いものの、スピードも重視されます。業務において仮説構築をする際、どのフレームワークが活用できるか、また仮説の質と結論を導く時間軸のバランスを取れるかを実践で試し、見つけていきたいと思います。 全体会議前のデータ分析で何を試みる? 具体的に試みるアクションとしては、毎週月曜日の全体会議前に前週のデータを使って結果および今後の動向分析を行います。その際にフレームワークを利用して複数仮説の構築を試みます。これまでの経験に基づく仮説と、その逆説を並行して作成し、フレームワーク活用時の仮説との差異も合わせて見ていきたいと考えています。 ---

データ・アナリティクス入門

比較思考で紐解く学びの極意

分析の意味は何? 「分析は比較なり」という言葉は、普段何気なく耳にするものですが、今回改めてその意味を強く感じました。データ分析において、必要な情報を集めることに注力し過ぎるあまり、単にデータを並べただけで満足してしまい、見る人によっては分析結果の捉え方に差が生じる場面があったと実感しています。動画学習では、適切な比較対象を選ぶことの重要性にも触れ、データを揃える行為は無駄ではないものの、分析の目的や見せ方を意識しなければ本来の意味での分析にならないということを認識しました。 物流の選定はどう見直す? この考え方は、物流部門における利用業者の選定や見直しにも応用できると感じます。たとえば、ある条件がある場合とない場合で、一律運賃が設定される荷主とそうでない荷主の運賃総額を比較する手法が考えられます。 大手と中小の差は? また、単純に大手業者と中小業者を料金面で比較するのではなく、企業の規模や対応する配送範囲が同様である業者同士で運賃を比較することが、より適切な分析につながると理解しました。 比較対象の妥当性は? さらに、自分が揃えたデータが本当に比較に適したものかどうか、常に振り返りを行うことが大切です。普段利用している輸送業者に注目し、過去の実績が明確な業者だけを比較対象にしている現状を見直し、新たな業者や新しい地区の業者も検討することで、より多角的な視点を持つことができると感じました。

「重要」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right