データ・アナリティクス入門

数字で解く最適ログイン戦略

視覚化はなぜ大事? 数字に集約し可視化することの重要性を改めて認識しました。代表値と分布に注目し、平均値や標準偏差の概念を意識することはもちろん、場合によっては単純平均ではなく適切な重みづけを行う必要があることも理解しました。 どうユーザー呼び込む? ログイン率向上のためには、プッシュ通知を活用したユーザー誘導施策が有効だと考えています。具体的には、アプリのログイン時間帯とユーザーの年代を比較し、どの時間帯にプッシュ通知を設定するのが適切かを検討していきたいと思います。 データは見えていますか? まずは、アナリティクスで必要なデータが可視化できているか、ログイン時間帯と紐づくユーザーの年代ごとのデータが抽出できるかを確認します。その上で、データの分散状況を把握し、最も効果が高いと思われる時間帯を優先して施策の検討を進める方針です。

データ・アナリティクス入門

データ活用で見えた新たな気づき

平均値の選び方は重要? 平均値には様々な種類があり、その選択はデータに大きな影響を与えます。外れ値がある場合、平均値よりも中央値を採用することが重要であり、データのばらつきを数値で示すために標準偏差を使用することが効果的であることを学びました。 輸送会社ごとの加重平均とは? 私たちの事業所で使用する輸送会社の使用率を考慮し、加重平均を採用することで、待機料などの平均額をより正確に把握することができると考えました。 データの明確化を目指して 費用や作業時間を集計するアプリを使い、加重平均と標準偏差を計算することで、数値の差を明確化し、より精度の高い平均値の算出を目指しています。 実績データとの比較はどうする? これらの処理結果として得られた加重平均値を基に、毎月の実績データと比較し、データの妥当性と信頼性を確認する予定です。

クリティカルシンキング入門

疑問をチャンスに変えた日々

課題洗い出しはどうする? 業務課題に取り組む際は、まず課題となるイシューを漏れなく洗い出すことが基本です。各イシューは疑問形で具体的に問いかけることで、本当に解決すべき問題が明確になります。また、一面的な経験則に頼らず、多角的な視点から解決策を検討することが求められます。特に、最初に手を付けるべき課題を明確に優先順位を付けることで、効率的な対応が可能となります。 伝え方と相談対応はどう? 顧客からの相談や業務上の課題に対しては、これまで学んだ正しい日本語の使い方や伝え方、そして図や表を活用したイメージしやすいドキュメント作成の技法を積極的に活用しています。各課題を順番に処理するのではなく、優先度を意識しながら対応すること、さらに対策を立てる際には自身の経験に引きずられず、必要に応じて他者の意見も積極的に取り入れている点が大きな特徴です。

マーケティング入門

限られた時間で切り拓く未来

目標が見えるのはどう? 現在の立ち位置を見直す中で、目指す方向に不足しているものや課題が明確になりました。今後のステップもある程度見えてきた一方で、時間が有限であるため、時間軸を意識しながら必要な要素を取捨選択することが求められます。 リソース活用はどうするの? 自社のリソースが限られる中、全方位的な営業には限界がある現状を再認識しました。どのお客さまにどのような価値を届けるかを見つめ直し、まずは自社のリソース分析(強みや課題の把握)から取り組むべきだと感じています。 俯瞰視点は何を示す? また、業務を俯瞰する際には、フォアキャスティングだけでなくバックキャスティングの考え方も取り入れ、学んだ内容を活かしたいと考えています。常に広い視野と俯瞰的な視点を保つことで、新しい業態のヒントを見出し、業務に取り組んでいきたいと思います。

デザイン思考入門

生成AIとデザイン思考で切り開く挑戦

生成AIの使い方は? 生成AIを効果的に使いこなしている皆さんの姿に驚きました。また、提案されたアイデアが多角的な視点から考えられており、誰も同じコンセプトで作成していなかった点が印象的でした。自分もどの部分でユニークな回答を生み出せたのかを見直し、今後の取り組みに活かしていきたいと考えています。 課題解決の流れは? デザイン思考入門で学んだ共感、課題定義、発送、試作の手法を総務業務の改善活動に積極的に取り入れていきます。まずは、様々なイベントに積極的に顔を出して情報を収集し、皆さんが抱える問題点を洗い出します。その中で特に意見が多かった項目をもとに課題定義を行い、場合によっては実際の現場の声を反映したペルソナ作成も検討しますが、生成AIを活用することで自分では捉えきれない視点も網羅できるため、その力も借りながら進めていくつもりです。

データ・アナリティクス入門

数字が導く成長物語

平均と中央値の必要性は? 平均と中央値は必ず確認するようにしていました。普段は数字を多く扱わないため、加重平均や標準偏差を使うケースはほとんどありませんでしたが、数が多い場合にはこれらを用いることもあり、特に違和感は感じませんでした。 意見共有は効果的なの? 日頃から行っている手法ですが、最近は大規模な数値を扱う機会が少なく、現状ではあまり活用できる場面が想定できません。しかし、他者と同じ観点で意見を出し合うためには、この考え方を共有することから始めるのが効率的だと考えました。 グラフ形式を再考すべき? また、いつも同じ形式のグラフを使いがちだったため、より適切な形態を再度検討してみるのも良いと思いました。一時期はヒストグラムを多用していたものの、ここ数年は使用していなかったので、今後改めて利用してみたいと感じています。

データ・アナリティクス入門

適切な比較が導く分析力アップの秘訣

比較の本質とは何か? 分析の本質は比較にあり、適切な比較対象を選ぶことが重要であると学びました。特に、比較対象が適切かどうかを判断する際には、分析の目的に立ち返ることが大切だと感じました。 外部環境の影響にどう対処する? 中期経営計画の策定や予算予想の達成に向けて、事業の課題や改善点を過去の実績から分析するだけでなく、外部環境が事業に与える影響についても分析し、仮説を立てる場面でこの知識を活用したいと思います。 日常業務での気付きと見直し 講義を聞いた時点では、一見すると当たり前の内容に思えることも、実際に練習問題を解こうとすると、目的を忘れ、適切な比較対象を考えられないことに気づきました。私自身も業務において、本来の目的から外れた分析や結論に至ることがあるため、適切な比較ができているかを常に見直す習慣を持ちたいと考えます。

戦略思考入門

フレームで見える業界の未来

業界動向、どう分析できる? 業界動向をフレームワークに当てはめて考察することで、内容の理解が容易になります。例えば、人口減少という外部環境の変化を背景に、水道業界では事業体の広域化や統合化が進んでいます。これは、水道施設の料金徴収などにかかる固定費用を広域化により分散し、コスト削減を狙う規模の経済性の一例として捉えられます。このように、フレームワークを活用することで、業界のメリットや改善点が具体的に把握できるのです。 ニュースはどう捉える? また、ニュースなどの動向を注視する際には、それぞれの現象がどのフレームワークに該当するかを意識すると効果的です。外部環境の変化ではPEST分析のどの要素に属するのか、また事業再編の場合はどのフレームワークに基づいているのかを考慮することで、より論理的かつ具体的に状況を理解できるようになります。

クリティカルシンキング入門

資料作成で成功するコツとは?

伝えたいことは何? プレゼン資料を作成する際には、まず自分の言いたいことを明確にすることが重要です。その上で、資料を通じて何を伝えたいのかを強調するために、色使いやグラフの選択、矢印やアイコンの活用を考えると効果的です。 何を中心に構成する? プロジェクト資料を作成する際には、伝えたいキーメッセージをしっかりと整理し、それを中心に資料を構成することが求められます。また、一つのスライド内での情報配置にも注意し、視覚的にわかりやすいように心がけると良いでしょう。 伝わり具合を確認? このようなポイントは、資料を作成するたびに意識したいものです。さらに、社内のミーティングでは、自分のプレゼンテーションが意図した通りに伝わったかどうかを同僚にフィードバックしてもらう機会を設け、客観的な振り返りを行うことが効果的です。

クリティカルシンキング入門

柔軟思考で挑む新しい一歩

思考の整理はどう? 論理的思考や多角的な視点、適切な情報評価の大切さを改めて認識しました。情報の背景を正確に把握し、正しい問いかけができることで、複数の観点から物事を分析する力を養う必要があると感じています。 決断の根拠は? また、これまでの経験や情報に頼るだけでなく、判断の正確性を意識して計画を進めることの重要性を実感しました。一方で、考え込むあまり思考時間が長引き、スピード感が失われるリスクにも注意が必要だと感じています。 実行方法はどうなる? 今後は、リスク分析や問題解決、データ分析において、学んだ手法を活用しながら、必要な情報を漏れなくかつ重複なく整理して対応していくつもりです。思い込みやバイアスを排除するための具体的な方法はまだ確立していませんが、試行錯誤を重ねながら取り組んでいきたいと考えています。

データ・アナリティクス入門

仮説で広がる学びの未来

仮説思考はなぜ重要? データ分析において仮説思考が重要であると実感しました。しかし、まだ完全に身についていないため、今後の業務の中で積極的に意識し、訓練していく必要があると感じています。理解したつもりでも、実際に言葉にして表現する際には苦労することもありました。 経験則から何が変わる? 今回の学びを生かし、所属する部門で担当している市場動向や契約に関するデータの収集と分析に、従来の経験則に基づく判断から仮説思考に基づいた立案へとシフトしていきたいと考えています。 言語化はどうする? さらに、言語化の訓練を重ねることで、仕事はもちろん日常生活においても仮説思考プロセスを意識して課題に取り組む習慣を身につけたいと思います。そして、適切な結論を導き出すために、さまざまなフレームワークや手法の活用を習慣化していく所存です。

デザイン思考入門

デザイン思考が導く学び

他者意見の学びは? これまでのグループワークを通して、さまざまな方の意見に触れる機会がありました。今回のテストでは、また違った視点からのフィードバックを得ることができ、他者の視点がとても貴重であると実感しました。 サービス企画の一歩は? 普段の業務では、新しいサービスを企画する際に、プレマーケティングとして信頼関係のあるお客様に紹介し、フィードバックを収集する機会を設けています。このプロセスは、まさにデザイン思考のテストフェーズそのものだと感じました。 デザイン思考の活用は? また、これまで深く意識していなかったデザイン思考が、実際には日々の業務に広く活用されていることに気づかされました。今後は、サービス開発だけでなく、社内での合意形成やプロジェクト推進など、その他の業務にも積極的に応用していきたいと思います。

「活用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right