データ・アナリティクス入門

プロの視点で分析スキルを業務に活かす方法

フレームワークの重要性を実感 前期の戦略入門でも感じたことだが、まずはフレームワークや型にはめて物事を考えることの重要性を改めて実感した。分析においてはWhat, Where, Why, Howのステップが基本であり、日々の業務においてもこの点を意識して進める必要があると強く感じた。今週の演習を通じて、これまでの経験や感覚に頼っていたことを再認識したので、今後の学習期間中はこの点を意識して取り組んでいきたい。 大幅に下回る結果を改善するには? 現在の業務において、前年以上の売り上げを上げている施設や地域がある一方、前年を大幅に下回る施設や地域も存在する。このような場合において、問題や原因を特定し、その要因を探り、どのように改善に繋げていけるかを追求するために、今週の学びを早速活かしていきたいと考えている。 MECEを使った分析の取り組み 今週の学びの一つであるフレームワークを自分のものにするために、現状の業務に適用してみることにした。週次で分析を進めている特定の地域がなぜ前年を下回る結果となっているのかを題材に、MECE(Mutually Exclusive, Collectively Exhaustive)を意識しながらロジックツリーを活用して分析していきたい。

戦略思考入門

戦略思考×DXで未来を描く

戦略思考の価値は? 戦略思考とは、複雑な状況をできるだけシンプルに整理し、わかりやすく説明できる能力であると感じました。仕事に限らず、プライベートでもこの思考方法を取り入れることで、自然とその考え方が身につくのではないかと思います。 技術活用の意義は? また、参加者の方が紹介されていた、生成AIやDXツールを利用して「捨てる」理由を明確に示したり、シナリオプランニングの精度を高めるという事例は非常に印象的でした。私自身もこれらの方法を実践してみたいと感じています。 部署の役割を整理するには? 現在、私が担当している部署では、業務範囲が曖昧になりがちなため、部署本来の役割や業務内容を明確にし、具体的なアクションプランに落とし込む必要があります。そのため、プラン策定に向けて以下の点を進めたいと考えています。 今後の具体的な取り組みは? まず、これまでの成果と課題を整理するために、各担当者へのヒアリングを実施します。次に、他部署との役割の違いを明確にし、自部署に影響を与える外部環境や社内の変化についても分析します。そして、あるべき姿を明確に設定し、言語化することを目指します。最後に、部内の各チームごとに、それぞれの役割と取り組むべき課題を整理していきたいと思います。

データ・アナリティクス入門

MECEで分析の精度と効率をUP!

MECEの重要性を再認識 MECE(Mutually Exclusive, Collectively Exhaustive)という概念を知ってはいたものの、長い間実務で意識して使ってこなかった。そのため、What, Where, Why, Howをしっかりと整理しながら進めないと、方向性を見誤る原因となり、結果として漏れが多い分析で無駄に時間を消費することになってしまう。 実務でのMECE活用法 こうしたミスを防ぐには、実務を進める際に常にMECEを頭に浮かべるトレーニングが必要だ。特に仮説を立てる場面が多く、成果が出ない原因になりがちである。特に営業戦略を立てる際には、一般消費者向けのプロモーション内容が的外れになる可能性があるため、プロセスの重要性が極めて高い。 書き出しで得られる効果は? 動画でも言及されていたように、文字として落とし、ビジュアル化することは重要だ。書き出すことで漏れや重複を回避し、整理が進むはずだ。ロジックツリーは何年も使ったことがないが、時間の問題にもなるものの、逆に簡潔化され、スピードが上がるプロセスになるかを試してみたいと思う。また、その過程で「目的は何か」を見失わないようにし、表面的かつ形式的にならない工夫を取り入れたいと考えている。

クリティカルシンキング入門

問いをクリアにする思考術の大切さ

なぜ問いを意識する? 日常的に、現在の自身の目的や問いを意識しているつもりですが、十分ではないと感じています。特に意識したいのは以下の2点です。まず、本当にその問いが正しいのかを検証すること。そして、その考え方や作業が問いに沿っているのかを確認することです。 議論はどう整理すべき? この問いの重要性については、あらゆる業務(資料作成、メール、周囲とのディスカッション)に活用できると考えています。特にディスカッションでは、議論が発散することがよくあります(それが目的の場合もありますが)。これは、そもそもの問いが不明確であったり、各人が立てている問いにばらつきがあることが原因と考えられます。そのため、議論をより円滑で意味のあるものにするために、「我々が目指すべきゴールは何か」という問いを、自分や周囲に問いかけるようにしたいと思います。 どう問いを明確にする? 最初に行うべきは、自分の問いを可視化し、明文化することです。そして、その問いが適切かどうか内省し、必要であれば同僚と確認し合うことにしたいと考えています。問いを明確にするためには構造化が重要だと考えており、現時点ではその力が十分でないため、構造化の学習(書籍を読む、試してみること)も並行して行っていきたいと思います。

アカウンティング入門

思考の枠を超える、新たな発見の旅

思考の枠を越える体験とは? ナノ単科の受講を通じて、自分がいかに思考の枠にとらわれていたかを痛感しました。これまでは、目先の業務に追われて新しい発想や視点を取り入れる余裕がありませんでした。しかし、この講座では様々なケーススタディを通じて、異なる業界の成功事例や戦略に触れることができました。 視点を変えると何が見える? 特に印象深かったのは、視点を変えるだけで見える世界が大きく広がるということです。実際に、自社の取り組みを再評価する際に、これまでは気付かなかった改善の余地や新たな機会を見つけることができました。また、他の受講生との意見交換を通じて、異なる観点からのフィードバックを得ることができたことも、この講座の大きな収穫でした。 学んだことをどう活かす? さらに、講師の指導が非常に具体的で明確だったため、学んだ内容をすぐに実務に活かすことができました。理論だけでなく、実践的なノウハウを学ぶことで、自分のスキルアップを実感しています。 経験がもたらした自己成長 この経験を通じて、自己成長の重要性を改めて認識し、今後も継続的に学び続けていきたいと強く感じました。ナノ単科は、単なる知識の習得にとどまらず、実際の業務での活用を考える上でも非常に有益なプログラムです。

マーケティング入門

ビジネス成功の鍵を握る顧客ニーズの把握術

顧客のニーズを把握する方法は? 「何を売るか」について非常に面白い講義だったと思う。顧客の潜在的あるいは真のニーズを売る側が事前に把握し、具体的に提示することが、多様なサービスにおいても活用できると感じた。例えば、スーツの事例において、コロナ禍での必需品であるマスクを早めに市場に投入したことが、顧客のニーズに合致して成功に繋がったのではないかと考える。また、私自身ビジネスを進める上で、事前のヒアリングを通じて必要な情報を収集し、顧客や潜在顧客に合った商品やサービスを提供することが、顧客満足度の向上に寄与すると感じている。 業務改善で考えるべきことは? 社内の業務改善の観点から見ても、医療や介護業界ではDX化が遅れている。しかし、顧客や従業員にとって無駄な業務を減らし、効率的に業務に専念できるようにすることは、ペインポイントの解消に繋がるのではないかと考える。 自分の強みをどう活かす? また、業務効率化を年単位で行っているが、できれば四半期ごとに各部署の管理職と議論し、より良いサービスの提供に専念できるようにスタッフへのヒアリングを強化したい。そして、自分自身の強みを整理し、世の中に貢献できるサービスを見つけ、将来的な起業の指針として知識を活用していきたいと考えている。

クリティカルシンキング入門

軸を変える!データの新発見

最初のLIVE講座の印象は? クリティカルシンキングの総まとめの週では、最初のLIVE講座で「自分の思考の癖を知る」というテーマが特に印象に残りました。その後のLIVE講座では、week1~5で学んだ知識を活かしながら、2つの問題に取り組み、その中で数字の並びを見ると細部に過度に意識が向いてしまう自分の癖に気づかされました。そこで、まず問題全体を把握し、数値を見える化する、軸を変えて視点を変えるといった手法を段階的に取り入れることの大切さを実感させられました。 数字分析はどう進む? さらに、数字の羅列や傾向を分析する際、現実の業務の中でも工数の見直しやシステムの性能分析などが必要になる状況を思い起こしました。今回学んだデータ分析のツールを活用すれば、初めに考えすぎず、さまざまな角度からデータの整理と視覚化を行い、その上で仮説を立て補足説明を探すという実践的なアプローチが可能だと感じました。 どのデータ視覚化? 今後は、単に収集したデータに基づいて行動するのではなく、まずはデータを多角的に分類し、視覚化する作業を徹底して行います。そして、その中から得られる示唆をたくさん書き出し、グループ化や抽象化を通じて整理し、自分の視点をさらに深める検討を進めていきたいと思います。

データ・アナリティクス入門

視点が変わる数字の物語

視点と標準偏差は何? 「分析は比較である」という考えから、視点やアプローチの違いが明確に見えてくることを学びました。数学が苦手な自分にとっては難解な点もありましたが、標準偏差の活用方法などを理解できたのは大きな収穫です。また、単純平均、加重平均、幾何平均、中央値といった代表値と、散らばりを示す標準偏差の違いについても理解を深めることができました。 集約方法はどうなっている? これまではエクセルで作成できるグラフからなんとなく情報を把握していたのに対し、今回体系的に数字の集約方法を学んだことで、今後はどのように数字を集約すべきかを意識して活用していこうと思います。特に幾何平均は初めての使用なので、さらに調査を進める予定です。標準偏差についても、その考え方から算出方法を追求するのが面白いと感じました。 分析の流れはどう進む? 前回からの繰り返しになりますが、分析のアプローチ―目的の確認、仮説の設定、データ収集、仮説の検証―を守りながら、視点と手法を適切に用いることを今後も意識していきたいと思います。幾何平均や標準偏差はまだ完全に理解できていないため、さらに勉強を重ねる必要があると感じています。テストの品質評価においては、標準偏差や中央値の考え方を取り入れていく予定です。

戦略思考入門

戦略フレームワークで広がる視野の旅

どのフレームワークを使う? 戦略を考える際には、3C、PEST、SWOT、バリューチェーンを用いることが、有効であると感じました。特に、チームで取り組むときには、それぞれのメンバーの主張の背景を理解し、共通の前提や目標を定めることが重要です。また、タスクを分担することにはリスクも伴うことに注意が必要です。 戦略の課題は? 印象に残ったのは、分析自体は知っていたり、部分的に活用した経験もあったものの、しっかりと戦略にまで落とし込めていないと感じた点です。理由としては、戦略に取り組む時間を十分に確保できていないことや、適切な対策を引き出すための知識が不足していることが挙げられます。これを改善するためには、まず思考する時間を確保すること、そして日常的に成功事例を蓄積することを心掛けたいと思います。 視野をどう広げる? また、今回学んだフレームワークを使い、自分の担当しているサービスや所属する部門、さらには会社全体といったさまざまな観点から考えてみることが、自分の視野を広げる良い練習になると感じました。まずは、現在の担当のレベルで、今回紹介された4つの分析を実施し、その結果をもとに気付きをまとめ、フレームワーク活用の際の注意点も振り返られるようにしたいと考えています。

データ・アナリティクス入門

問題解決の新たな視点!変数分解の有効性

問題解決に必要な視点とは? 問題を解決しようと考えるとき、解決策から始めがちですが、「そもそも問題が何なのか?」や「それを問題と捉えることが正しいのか?」という点から考えることが大切だと思います。MECEに分解する際、これまでは層別分解に頼りがちでしたが、今後は変数分解の観点も意識していきたいと感じました。 日々の業務での手法活用法 日々の業務は「問題を特定して解決していくこと」の連続です。そのため、この手法は様々な場面で活用できると感じました。短期的な業務では、毎月の売上向上や自社サービスの利用率向上のための課題や解決策を考える際に役立ちます。また、長期的な視点でビジョンやミッションの実現を考える際にも、このフレームワークは効果的だと感じます。 効果的に習慣化する方法は? 問題に直面した際には、「1.『What』『Where』『Why』『How』の順番で考えること」と「2. MECEに分解(層別分解と変数分解)」を意識せずとも実践できるように、日々見返すメモに記載するなどして、記憶に刷り込んでいきたいです。また、チームメンバーにも学んだことを伝え、自分が意識できていないときもメンバーが意識できるようにすることで、チームとして実践できるようになりたいと考えています。

データ・アナリティクス入門

複眼で見る仮説の世界

仮説の重要性は? 学習前は、仮説を立てることに対して、恣意的または無意識に寄せたデータを収集してしまうのではないかという懸念がありました。しかし、今週の学習で、複数の仮説を立てることの重要性を理解できました。仮説はある程度の網羅性を持つべきであり、3Cや4Pといったフレームワークがその考え方を支えていることに納得しました。 仮説と行動の速さは? また、仮説を立てることが物事のスピードに直結するという新たな視点も得られました。これまで、仮説が誤っていた場合はすべてをやり直すゼロスタートになると思い込んでいたのは、仮説を決め打ちにして一つだけ持っていたからだと、自分の在り方から理解しました。 多様性と仮説の関係は? 担当しているダイバーシティ推進の取り組みにおいて、複数の仮説を活用することは、多様な在り方に対する効果的な施策の切り口が一つではないことと合致すると感じます。一方で、大きな方向性や目的の核がなければ、アイディアが散らばってしまうため、その点は常に意識しておきたいと思います。 検証の進め方はどう? 仮説の検証過程では、恣意的な判断を防ぐためにフレームワークに立ち返り、複数の仮説について必ず他者と対話し第三者の視点も取り入れるよう努めています。

データ・アナリティクス入門

論理で拓く未来への一歩

現在の状況はどう評価? 問題解決には、まず最初に現在の状況と理想とのギャップ、つまり「あるべき姿」と「現状」の差を明確にすることが必要です。このギャップは、分析の際に数値化することで、問題の規模や深刻度が具体的に把握できます。 問題発生の場所は? 次に、問題が具体的にどこで発生しているのかを検証します。問題を細かい要素に分け、見なくてもよい部分を除外することで、焦点を絞りやすくなります。 原因は何だろう? その後、なぜ問題が発生しているのか、その根本原因を徹底的に分析します。そして、最後のステップとして、どのように解決策を実行していくかを具体的に考えます。ここでは、ロジックツリーやMECEの考え方を活用することで、多角的な視点から検討し、説得力のある解決策をまとめることができます。 解決策はどこから? この問題解決の手法は、売上の予算と実績の差異を説明し、対策を検討する際に非常に有効です。問題解決のステップを意識することで、効率よく課題に取り組むことができると感じています。また、これまであまり活用してこなかったロジックツリーやMECEの手法も、論理的な考え方を鍛えるために必要であり、簡単な分析にも応用することで、次第に使いこなせるようになりたいと思います。

「活用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right