アカウンティング入門

運動成績に学ぶPLの極意

大局をつかむには? 損益計算書(PL)の読み方について学び、細かい項目に注目するよりは、大局をつかむことが大切だと理解しました。具体的には、売上や利益の動向に注目して読み解く方法がポイントです。特に、以下の3点に注意することが推奨されました。 売上高はどう見る? まず、売上高では、過去からの推移に目を向けることが重要です。次に、5つの利益においては、売上高に対する比率やその推移、各利益間の差に着目する必要があります。さらに、比較対象として、過去実績や業界平均、自社の目標値などを常に念頭に置くと、より実態に即した分析ができることを学びました。 価値はどこに? また、損益計算書を「運動成績表」に例える表現には、非常に分かりやすく感銘を受けました。儲けを大きくするためには、どのような価値が付加されているか、また儲けの源泉が何であるかを明確に把握することが鍵であると感じました。これからは、価値を意識しながら損益計算書を読むことを習慣化していきたいと思います。 実践はどう進む? さらに、Week2で学んだ内容を実践するために、自社の損益計算書を実際に読み、自社の経営目標の達成度を確認してみるつもりです。その結果をもとに、同業他社との比較から、自社が直面している課題や社会情勢、内部目標設定の問題点、また競合の動向などを分析していく考えです。 日常ではどう対応? 一方で、日常業務においてなかなかPLに触れる機会が少ないため、理解を深めるのが難しいと感じています。同じような課題をお持ちの方がいらっしゃる場合、どのような方法で日々の業務に学びを活かし、知識の定着を図っているのか、ぜひ教えていただけると幸いです。

デザイン思考入門

デザイン思考で顧客価値を最大化する方法

デザイン思考をどう活かす? デザイン思考には、共感、課題設定、発想、試作、テストのステップがあり、これを非線形に繰り返すことが重要だと学びました。この思考をビジネスに活かすためには、顧客やユーザーの行動を観察し、彼らの体験価値を最大化することが大切です。最近学んだカスタマージャーニーでも、ペルソナを細かく設定することが、サービスやプロダクト、戦略を考える上で重要だとされており、これがデザイン思考と通じると感じました。 学びを深めるステップは? 学びにおいて大切なこととして、1.言語化、2.教訓化、3.自分化が挙げられ、これが特に印象に残りました。私は考えを言葉にするのが苦手なので、まず書いてみて、次に発言し、さらに伝わりやすくするステップを踏んでいければ良いと思っています。 システム開発の目的を再確認 現在、私は営業系のシステムを開発・管理・運用する部署に所属しており、社内の営業部門がメインの顧客です。これまで、ITやシステムに慣れていないユーザーをターゲットに、使いやすさを重視した設計を行ってきました。しかし、講義を通じて、システム開発の本来の目的は効率化や売上向上を図ることにあると考え直しました。ターゲット設定を見直し、本来の目的達成のための設計をもっと重視すべきかもしれないと感じました。 顧客理解に基づく設計とは? システム開発においては、インターフェイスの使いやすさに過度に拘らず、データの意味を可視化し、顧客理解や戦略策定を実現するための設計に焦点を当てる必要があります。既存のシステムについても、ユーザー目線でその利用価値を最大化できるかを考え、ユーザーからのフィードバックを積極的に取り入れる姿勢が大切です。

データ・アナリティクス入門

分析で見つける自分の可能性

なぜ分析は重要? 分析とは、単にデータを分類し比較するだけでなく、目的に沿った深い理解を得る手法です。基本となる4つのステップ―目的の明確化、仮説の立案、データ収集、結論付け―を踏むことで、より有意義な結果を導き出すことができます。 比較対象はどう決定? 分析を行う際は、比較対象の選定が重要です。分析したい要素以外の条件を揃えるとともに、目的に合った比較対象を選ぶことで、情報が正確かつ具体的に浮かび上がります。 受動から能動へは? これまで、航空会社での営業活動において、社内の分析チームから共有されたデータやコメントを受動的に読み取っていました。しかし今後は、共有された情報に頼るだけでなく、自ら積極的に情報を集め、複数の視点から状況を把握できるよう努めたいと考えています。 予約状況はどう見る? 例えば、週間予約動向の分析では、毎週発表されるどの便・クラスの予約状況が一定の割合で埋まっているというデータを参照するだけでなく、先週との比較や他社の状況との違いを検討し、より広い視野で状況を評価していきたいと思っています。 売上分析の切り口は? また、売上実績の分析においては、単に他社や昨年度同月との比較にとどまらず、国籍、性別、年齢別のデータも取り入れ、顧客のニーズをより深く探る視点を持ちたいと考えています。 仮説設定はどうする? このような分析を行う際には、まず「何を知りたいのか」という目的を明確にし、データを眺める前に自分なりの仮説を立てることが大切です。数値をただ確認するのではなく、自身の考えを持ってさらに深堀りし、既存のコメントに影響されすぎず、自らの視点でデータを解釈する姿勢が求められています。

クリティカルシンキング入門

学びで魅せる問題解決の瞬間

4つの基本は何? 問題解決のステップとして、まず「What(問題の明確化)」「Where(問題箇所の特定)」「Why(原因の追求)」「How(解決策の立案)」の各要素に沿って、問題が何であるか、どこに問題があるのか、なぜその問題が生じたのか、そしてどのように解決すべきかを整理します。 現状をどう把握? 現状を正確に把握するためには、問題を分解して考えることが基本動作となります。その際、MECE(もれなく・ダブりなく)を常に意識し、目的に応じた適切な切り口と切り方を選ぶことが大切です。 切り口はどう選ぶ? 具体的には、MECEの切り口としてまず、全体集合を部分集合に分ける方法があります。例として、年齢、性別、職業などの観点から情報を整理します。次に、事象を変数で分ける手法、例えば「売上=単価×数量」や「利益=利益/売上」といった考え方があります。さらに、ある事象に至るプロセスに着目し、お客様が不満を感じる可能性のある各段階(ご案内、オーダー、提供時間、味、会計、退店後など)を細かく見極める方法も有効です。 対策はどう決める? サービストレーナーとして店舗向けのクレーム問題に取り組む際は、問題がどの程度のものか、どこに問題があるのか、なぜその問題が発生しているのか、そしてどのような対策を講じるべきかを徹底的に分解しながら分析します。このとき、プロセスの各段階を重視し、冷静かつ客観的に全体を俯瞰することが重要です。 日常にどう活かす? 以上の考え方は、問題が起きた際にネガティブにとらえず、全体像を俯瞰して分析するための基本的なアプローチとして、日常的に意識し習慣化することが求められます。

クリティカルシンキング入門

データ分解で見つける新しい視点

データ分解の必要性は? 今週の学習では以下の点について考察しました。まず、データを分解する際には、さまざまな視点からの切り口を持っておくことが重要です。データの分解方法や細かくするやり方によって、データの見方は大きく変わり、傾向や仮説が立てやすくなります。また、多面的な視点でデータを分解することも必要です。MECE(漏れなく、ダブりなく)を用いて検証することは基本ですが、さまざまな角度から分析することの重要性を感じました。さらに、データの可視化も重要であり、グラフなどを使うことで傾向の見方が大きく変わるため、積極的に用いていきたいと考えています。 業務へどう活かす? これを自分の業務に当てはめると、以下のようになります。データを単に表にまとめるだけでなく、詳細に分解したりグラフ化することで、関連性の洗い出しに役立てられると考えます。具体的には、開発中の製品の物性データ解析を行い、改善に必要な影響因子を洗い出したり、売上と在庫のデータ推移を国やユーザーごとに解析し、仮説立てに活用したりします。また、文章データを整理し、プロセス解析と分類分けによる分析を行います。 分析に多角視点は? データ分析や分解については、自分だけで行うのではなく、他の人にも確認をお願いし、異なる視点や着眼点を参考にして分解のバリエーションを増やすよう心がけます。データを取得する際も、従来の方法にとらわれず、「本当に必要なデータなのか」という視点を意識して行います。過去のデータとの関連性も考慮に入れ、有用なデータ取得を目指します。結果に対しては、「本当か?」といった問いを繰り返し、別の視点での傾向の可能性を確認することも重要です。

データ・アナリティクス入門

仮説で切り拓く未来の発見

仮説の意義は何? ビジネスにおける仮説とは、ある論点に対する仮の答えを意味します。重要なのは、正しい答えに決め打ちせず、複数の仮説を挙げることで網羅性を確保することです。仮説には「結論の仮説」と「問題解決の仮説」があり、時間軸によって過去の検証と未来の予測で内容が変わります。 仮説をどう検証する? 問題解決の仮説は、問題解決のプロセスに沿って、WHATからWHERE、WHY、HOWへと各要素に仮説を立てるものです。このアプローチにより、検証マインドが向上し、問題意識や改善点への気づきが促進されるという利点があります。 仮説は広く捉える? ゲイルを通して学んだのは、正しい答えに近づけようと意識するあまり、仮説の範囲が狭くなってしまう可能性があるという点です。思いつくままに仮説を列挙してみることで、仮説の網羅性や全体像が明らかになることを実感しました。また、数値を用いた費用対効果の分析手法も学ぶことができ、有用な気づきとなりました。 売上の原因を探る? 具体的な例として、売上分析においては、単価が低いことやコストが上回っていること、あるいは季節性の変動によって患者数が左右されるなど、さまざまな仮説が考えられます。これらの仮説は、結論の仮説として売上未達の要因を示すものと、問題解決のプロセスとして原因究明のための仮説として整理することが求められます。 仮説報告はどう? 毎週の売上数値進捗報告では、複数の仮説を設定し、その検証結果と合わせて報告することで、仮説立案のプロセスに説得力を持たせることが大切だと感じました。月末には、立てた仮説を通して得た気づきを言語化し、次のステップに活かす姿勢が必要です。

データ・アナリティクス入門

データ分析で経営に革命を起こす方法

標準偏差をどう理解したか? データを分析する際に使用する数値(平均値、中央値、標準偏差)について、特に標準偏差については名前を聞いたことがあってもよく理解していなかったが、今回の学習でよく理解できた。2SDルールを使うと、大体の平均値が分かることも印象的だった。また幾何平均についても学べてよかった。恥ずかしながら、これまで売上の成長率をデータを目で見た大体の数で算出していたため、売上予測を立てるのに幾何平均が大いに役立つと実感した。調べたところ、エクセルでは標準偏差はSTDEV.P関数、幾何平均はGEOMEAN関数を使うと算出できるようだ。 より的確な売上予測を立てるには? まず、目標設定のために売上予測を立てること。また、各製品のポテンシャル予測にも活用できそうだ。さらに、自社サイト会員数の分布を散布図を使って確認することができると思った。ニッチな業界のためこれまで分布を確認したことがなかったが、年齢や勤務地等でデータを分析してみると面白そうだ。 各製品の成長率を比較する方法は? 次に、扱う製品と市場の性質上、月毎の売上に大きなばらつきがあるため、年ごとにまとめるのでは効果的な数字が得られないと考える。そのため、各製品の月毎の売上を、過去の3-4年と比較することで成長率や今後の伸び率が確認できそうだ。また、例えば月1以上ログインしている会員の年齢を5年くらいごとに区切ってヒストグラムに示す、あるいは企画ごとに図式化することで、どの企画がどの年代に刺さっているのかが分かりそうだ。 有用なデータ分析を期待するには? これらの手法を取り入れることで、より具体的で有用なデータ分析ができると期待している。

データ・アナリティクス入門

広い視点で仮説を立てるコツ

なぜ複数の仮説が大切? 仮説を立てる際の重要なポイントはいくつかあります。まず、確からしい仮説がある場合でも、それに固執せず、複数の仮説を立てることが大切です。また、異なる観点から仮説を立てることで、見落としを防ぎます。特にフレームワークを活用することによって、網羅的に仮説を立てることが可能です。例として、3Cや4Pのような方法がありますが、分類に自信がなくても、広い視点で考えることが目的ですので心配ありません。 データ収集で何を探す? データ収集においては、比較対象を意図的に選び、反論を排除するための情報まで集めるようにしましょう。仮説を簡単に切り捨てないことがポイントです。 どうして視点を広げる? 売上が低迷している商品のリニューアルや新商品のコンセプト評価が思わしくない場合、特に3Cの観点から原因仮説や戦略仮説を立てることがあります。その際、視点が狭くならないよう、予測可能な答えをいったん頭から離し、第三者の視点で仮説を立ててみることが重要です。また、「顧客」と「競合」といった視点での分類に迷うことがありますが、分類自体に注力する必要はありません。仮説を排除した際の理由をデータで示す必要があるので、安易に仮説を切り捨てないようにしましょう。 フォーマットで何を改善? 仮説立てのフォーマットには、仮説を切り捨てた理由を記載する項目を設けることが有用です。また、「製品」に関しては、3Cだけでなく、「パッケージ」「味」「価格」なども考慮に入れたフォーマットに変えるのが良いでしょう。フレームワークを活用しても、一人では限界があるため、他部署の方々の協力を得ることも効果的です。

戦略思考入門

業務効率化と顧客対応の統合術

会社の繋がり方とは? 山田さんの視点で描かれた親身になってくれる会社、先輩との繋がりのある会社、会社間の繋がりが説明されており、次第に定量的な価値にシフトしている様子がとても印象的でした。利益額や工数を基にした判断基準は、今後の顧客対応に役立つと思いますが、その時にロジカルに捨てる判断が本当にできるのかはまだ疑問です。組織が大きくなるにつれ、創業メンバーが行っていた業務が惰性で残ることがあります。しかし、新しい意見をしっかり受け止め、必要のないものはきちんと捨てるようにしたいと思います。 新規事業の挑戦とは? 私の部署は新規事業を扱う部隊で、現段階では売上高や利益率のデータが十分に揃っていないため、定量的な優先順位を設定する朝の時間はありません。現在は、顧客の事業規模(売上高)と自律性で簡単な優先順位を決めていますが、リソースの逼迫が進むにつれて、どこかで切り捨ての判断が必要になると思います。 業務効率化の必要性は? 社内にはまだ多くの無駄な業務がありますので、社内プロセスを効率化し外注化を進めたいです。一方で、社外のお客様の優先順位付けは後回しにしたいです。役員からは売上げ見込みを試算するように指示されていますが、最初から事業規模が一定以上の特定業界の顧客にターゲットを絞っているため、現時点で売上見込みが少ない企業を即座に捨てる判断には激しないかもしれません。しかし、「なぜその顧客と取り組んでいるのか」は将来的に問われるでしょう。 優先順位をどう整理する? まずは、現顧客リストの取り組み状況から再度売上見込みを試算し、優先順位の妥当性を客観的に説明できるよう整理していきたいと思います。

アカウンティング入門

オリエンタルランドが教える原価の秘密

売上と原価の違いは? オリエンタルランドを事例に学んだ内容は、とても印象に残りました。売上の項目がチケット代など、具体的にイメージしやすいものであったのに対し、売上原価については当初ピンと来ず、理解に苦しんだ部分がありました。原価は業種によって異なると認識していたものの、たとえばチケット代に対する原価として考えた「人件費」が、自社やカフェなどの事例では「販管費」として扱われるため、納得が得られませんでした。 原価・販管費、どう違う? 最終的には、売上原価は売上に連動して変動するものであると理解し、納得することができました。また、原価と販管費を分ける必要性についても調べた結果、原価が変動費の要素が強く、販管費が固定費の要素を含むため、両者を区別することにより損益分岐点分析や、企業の損益計算書上でどこに課題や強みがあるかを段階的に分析できることを学びました。 貸借対照表の疑問は? 一方で、貸借対照表については、建設仮勘定や固定資産の減価償却の考え方が十分に理解できておらず、オリエンタルランドの資産総額の低さに驚いた反省があります。新しいエリアやアトラクションを展開する際、これらは損益計算書には現れず、減価償却を通して後から反映されるため、キャッシュフローや貸借対照表上の借入額にも注目する必要があると感じました。 理解を深めるには? 今回の学習を通して、新聞記事などで接する他社や自社の財務諸表を、従来よりも一歩または二歩深く掘り下げて読み解く力が身についたと実感しています。今後は、この知識を活かして企業分析や業務改善の提案につなげていきたいと考えています。どのような感想をお持ちでしょうか。

アカウンティング入門

数字の裏側で読み解く利益の秘密

利益構造はどう見える? 今週は、損益計算書から企業や店舗の利益構造を読み解く力を養う学びを得ました。売上や費用の数値の背後には、ビジネスモデル、顧客ターゲット、コスト構造など、戦略的な意思決定の結果が反映されていることに気づきました。同じ業種内でも、提供する価値やコンセプトの違いにより、利益を上げる方法が大きく異なる点が印象的でした。結果だけでなく、その仕組みに注目する姿勢を、今後も意識していきたいと思います。 業務改善はどう進む? 現在の業務では予算策定や業務改善に関わる機会が多いため、今回の学びをコスト分析や投資判断に活かしていくつもりです。具体的には、各支出項目の構成比を分析し、売上に対する影響度の大きい要素を特定して、改善の優先順位を決める方法を検討しています。また、資料作成時には「なぜこの数値になるのか」「どのような仕組みで利益が生まれているのか」といった視点を意識し、経営層にも伝わる論理的な説明を心掛けたいと考えています。そのため、まずは月次レポートのフォーマットを見直し、損益計算書の視点を取り入れるところから始める予定です。 売上と利益の謎は? さらに、P/Lを学ぶ中で「売上が伸びているのに利益が減る理由は何か」という疑問が浮かびました。成長戦略に伴い販管費や設備投資が先行しているのか、または売上自体が薄利多売の構造なのかといった見方が必要ではないかと考えています。このような状況を正確に把握するためには、損益計算書だけでなく、キャッシュフローや貸借対照表との連動性にも注目することが重要だと感じました。今後の学習では、これらの視点も取り入れながら理解を深めていきたいと思います。

データ・アナリティクス入門

仮説とデータで見える改善の鍵

比較分析のポイントは? 今回の講義では、業務改善や標準化に取り組む上で、比較分析の重要性を再認識しました。まず、比較の軸として「インパクト」「ギャップ」「トレンド」「ばらつき」「パターン」という5つの視点を意識することが基本であると学びました。また、問題・目的・問いを整理し、仮説を立てた上でデータを収集・加工し、検証していくプロセスの大切さにも気づかされました。仮説を立てる際には、MECEを意識して常識にとらわれず新しい情報も取り入れつつ、まずはざっくりとした仮説を作成する。その後、必要な検証の程度を見極めながら、情報収集と分析を行い、仮説を肉付けまたは再構築していくという流れが印象に残りました。これらの仮説思考のクセを身につけることが、今後の業務改善に大いに役立つと感じています。 業務の課題は何? また、実際に自分の業務改善に取り組む中で、長年携わってきた業務では「問題」として捉えられていない部分があるのではないかと考えています。そのため、まずは業務にかかる時間や売上といった指標を用い、仮説を立てて検証するアプローチを試みることにしました。具体的には、商談、見積、受注率、輸送費などの中から一つの業務を選び、その業務に要する時間を分析することで、担当者や取引先による差異が見られるかどうかを検証していきます。 数字の読み方は? さらに、仮説思考や全体的な思考力を養うため、以前紹介していただいた『定量分析の教科書』を購入し、数字の読み方や使い方について継続して学んでいく予定です。これからも今回学んだ手法を業務改善に活かし、実践を通して思考の習慣化を図っていきたいと考えています。

「売上」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right