データ・アナリティクス入門

問題解決の仮説でイベント成功へ挑戦

仮説の分類はどう? 仮説には、結論の仮説と問題解決の仮説という2つの重要な分類があります。結論の仮説は、ある論点に対する仮の答えを示し、一方で問題解決の仮説は、具体的な問題解決を促進するものです。これらの仮説を考えることで、私たちは「What(何が問題なのか?)」「Where(問題の所在)」「Why(原因追及)」「How(対策)」といった観点から問題を整理し、検証を進めることが可能になります。 仮説の意義を考える? 仮説の意義としては、まず検証するマインドを向上させることで説得力を高めることが挙げられます。また、関心や問題意識を高めることで、スピードアップと行動の精度向上にも寄与します。 参加者不足の原因は? 最近、学生向けイベントを開催した際に、当初の想定よりも参加者が集まらなかったという状況が発生しました。そこで、3W1Hを用いて具体的な問題解決の仮説を立て、どこに問題があったのかを明らかにしたいと考えています。今後のイベントでは、何が問題でどこに問題があるのかを具体化し、それに対する仮説を基に検証を重ねることで、より良い結果を目指したいと考えています。

データ・アナリティクス入門

受講生の挑戦史!仮説の軌跡

視野はどう広げる? 仮説を立てる際には、3Cや4Pといったフレームワークを活用することで、多角的な視点から物事を捉え、広い視野で考察することができます。まずは、現状の事象を一方的に決めつけず、可能な切り口をいくつも模索することが大切です。 データはどう活かす? その上で、仮説を裏付ける目的でデータを収集し、実際の状況と照らし合わせながら検証を進めます。これにより、問題点の所在が明確になり、その原因を把握することができ、より効果的な改善策に結びつけることが可能です。 戦略はどう選ぶ? また、商品ごとの価格政策や販売戦略においては、取引先ごとに異なるアプローチが必要となる場合もあります。そのような場合、十分な根拠をもとに仮説を立て、データをもって検証することで、精度の高い意思決定を迅速に行えるようになります。 どう多角的に考える? 日々の業務では、反射的な判断や行動に流されることなく、まずは多様な観点から事象を分析し、3Cや4Pの視点を取り入れて仮説を立てることが求められます。こうしたプロセスが、より論理的かつ具体的な改善策の検討につながるでしょう。

クリティカルシンキング入門

振り返りで見える学びの軌跡

データから課題は? データをもとに課題を明確にし、施策を立案する際は、情報を細かく分解して具体的な問題部分を特定することが重要です。問題箇所がはっきりしていないと、誤った施策を実施してしまい、問題解決に繋がらない恐れがあります。 イシューの原点は? 一方で、最初に設定したイシューを忘れずに保持する姿勢も大切です。人間はつい本来のイシューから逸れてしまいがちですが、常に立ち戻りながら議論を進めることで、正確な解決策を見出すことが可能になります。 問題の本質は? また、品質マネジメントの観点から、オペレーションミスの報告データを扱う場合、単にデータを眺めるだけでなく、さまざまな切り口で分解し、どこに問題が潜んでいるのかを明確にすることが有効だと感じています。 会議の進め方は? さらに、会議においてイシューがズレることはよくあります。そのため、必ずアジェンダを設定し、各項目ごとに目標を明確に共有する体制を整えることが必要です。あいまいな状態で会議を終えるのではなく、具体的なアクションにつながる形で議論を締めくくることが、問題解決への一歩となると考えています。

戦略思考入門

経済効果に隠された学びの真実

生産効率はどう評価? 「規模の経済性」を考える際には、単に生産量だけでなく、各プロセスの稼働率にも着目することが大切だと感じました。同様に「習熟効果」についても、製造業などでは自然な現象として捉えられている印象です。一方で、平準化と対比される点は意外な発見でした。しかし、昨今の人手不足の現状と、習熟する前にすぐ辞めてしまう現実を考えると、従来の「習熟効果」による改善が難しくなっているのではないかという危機感も抱きました。 多角化のリスクは? また、「範囲の不経済」という概念は非常に興味深く、安易な多角化がこの問題に陥る事例は意外と多いのではないかと思います。 経済性はどちらだ? 一方で、「習熟効果」については理解しやすく、納得感もありました。しかし、目指すビジネスモデルからは「規模の経済性」がかけ離れているため、既存顧客に対するサービスの提供バリエーションを拡大するという観点から「範囲の経済性」を考えるほうがイメージしやすいと感じました。 人件費はどう削減? さらに、人件費削減に関しては、外部調達や生成AIの活用が一つの解決策になり得ると考えています。

データ・アナリティクス入門

学びを視覚化!分析新手法の魅力

原因の仮説ってどう考える? 原因の仮説を考える際、思考の幅を最大限に広げることが重要だと実感しました。また、「問題に関係がありそうな要素」と「それ以外」という対概念を活用する考え方は、比較の観点からも非常に有用であったと感じています。講義で「分析は比較である」と最初に言われたことを思い出し、理解を深める手助けとなりました。 分析手法は何が新しい? プロセスウォーターフォールという、これまで自身で作成したことのなかった分析手法に触れることができ、今後の業務にも取り入れていきたいと考えています。業務上このような図を目にする際には、どのような観点で分析が行われているのかを意識して見るよう努めたいと思います。 視覚化で伝わるの? また、ファネル分析による絞り込みについては、これまでも暗黙的に業務で活用していた部分がありました。しかし、他者とのコミュニケーションにおいて、自分のイメージが十分に伝わっているかどうか不安に感じるため、今後はファネル分析やプロセスウォーターフォールといった手法を視覚化しながら議論を進めることを自分に推奨していきたいと思います。

データ・アナリティクス入門

仮説が導く学びの扉

仮説の役割って何? 「仮説」を立てる重要性を再認識しました。特に、3C(顧客・競合・自社)や4P(製品・価格・場所・プロモーション)といったフレームワークは、網羅的な仮説形成に有効であると実感しています。これまではあまり意識せずに活用してこなかったため、今後は欠かさず取り入れていこうと考えています。 従来方法の問題点はどう? 従来は、実績ベースで特徴や傾向を把握し、その後に仮説を立てる方法で業務を進めていました。しかし、その方法だと仮説が固定的になり、複数のパターンを検討できなかったり、現状にないデータへの仮説が立てられなかったりするというデメリットを改めて感じました。 新たな仮説の進め方は? そこで、今後はデータを見る前に課題に対して仮説を書き出すことから始めます。その際、3Pや4Cといったフレームワークを利用し、生成AIなども活用して個人のバイアスを抑えるよう努めます。検証段階では「WHERE」「WHY」「HOW」といった観点から複数パターンの仮説を立て、それらをデータとして記録し、「仮説→検証→結果」というプロセスを確実に回していきたいと思います。

クリティカルシンキング入門

多角視点で見つける解決のヒント

課題分解は難しい? 現状の課題に対する対策を検討する際、まずは課題を複数の客観的な観点から分解することが有効であると気付きました。これまで自己の経験則や伝聞に頼ったために、対策が偏っているという自覚が生まれたのです。 事業検討のコツは? 自部門で新たな事業を考えるにあたり、自社の強みと弱みをさらに細かく因数分解することで、強みを活かす事業や弱みを補強する事業の検討に役立てられると感じました。また、現在の能力を十分に活かしていない業務についても、同様の視点で他の業界や分野に適用できる可能性があると考えています。 課題整理の秘訣は? さらに、課題の整理を進める際には、正しい日本語とわかりやすい可視化の手法を心掛け、上司や部下に対して明確に説明できるよう努めようと思います。具体的なアプローチとして、まず現状の問題点を洗い出し、複数ある課題に優先順位をつけながら浮き彫りにしていきます。その上で、仮説を立てながら対策案を文章化し、必要であれば数値やグラフを用いて示す方法を採っています。最終的には、これらの内容を上司にプレゼンテーションする形で共有する予定です。

データ・アナリティクス入門

データ分析で見えてきた課題解決のコツ

データ分析の重要性とは? データ分析において重要なのは比較することです。データは分かりやすく加工して活用する必要があります。また、私自身が特に気をつけたいのは、目的を決めてから行動することです。課題がどこにあるのか、なぜそうなっているのかを考え、選択肢を出してから仮説を立てて進めることが大切です。 売上向上に必要な行動は? クライアントの課題解決に際しては、大きな目的である売上向上に対して、小さな目的を設定してから行動する必要があります。どこに課題があるのか、仮説を持ってヒアリングを行いたいと思っています。また、自身の営業計画立案においても、既存の課題や理由だけでは向上しないため、繰り返し検証して精度を高めていきたいです。 ヒアリングの視点はどうする? 具体的には、クライアントヒアリング時において、「What」「Where」「Why」「How」という観点から文章を用意し、必要に応じて「あるべき姿」とのギャップについて整理していきたいと考えています。自身の営業計画についても、現時点で考えている課題と理由を再検討し、改善を図りたいと思っています。

クリティカルシンキング入門

多角的視点が解くデータの謎

多角的視点はどう? データを見る際には、様々な切り口を持つことの重要性を改めて実感しました。切り口のレパートリーが少ないと、誤った解釈に導かれる恐れがあるため、一つのデータに対して複数の視点から分解することが、正確な解釈へとつながると感じています. 応募増加の理由は? 具体的には、月間の採用進捗を確認する場面で、前月から応募が増加した場合、属性・性別・年齢などの観点でデータを分けて検証すれば、その増加の要因がより明確になると思います。こうした実践的なアプローチが、日常業務における分析力向上に役立つと考えています. 切り口は変える? また、普段からデータを見る機会が多いこともあり、いつもより2パターンほど違った切り口で検討することを意識していきたいと思います。これにより、単に数字を見るだけでなく、背景にある要因や意味まで理解する助けとなり、分析の幅を広げることができると思います. 深い洞察は得られる? このような進め方を継続することで、データの分解に対するレパートリーをさらに充実させ、より深い洞察を得られるよう努めていきたいです.

アカウンティング入門

財務諸表の多面性を探る旅

基本と実践の関係は? 財務諸表について学ぶ中で、新鮮に感じたのは、その内容が一方で教科書的な基本を持ちながら、ケースバイケースでの解釈が求められる点です。これまでは決まったルールを覚えることが主だったように思いますが、財務諸表を深く理解し、その意味を自分自身で考えて最適な解釈を導き出すことが学びとなりました。 どこに配置すべき? 具体的には、各勘定科目をB/S(貸借対照表)やP/L(損益計算書)のどこに配置するのか、その理由を常に考えるようにしています。また、財務諸表の構造と自社事業や市場との共通点を意識して関連性を探ることも大切です。さらに、事業を顧客、提供する価値、価値の提供方法、資源という観点からも捉えてみたいと思っています。 戦略はどう組み立て? 決算が近づく中で、社内で目標利益を達成するためにどのような戦略が立てられているかを、財務諸表の視点から理解しようとしています。私の部署は支出を伴う部門ですが、コストセンターとしての役割とプロフィットセンターとしての立場を意識し、業績への影響を考えていきたいと考えています。

戦略思考入門

古きを温め新しきを拓く挑戦

伝統と変革ってどう? 捨てる勇気という観点では、日本人は抽象論だけで考え、取引先の顔を重視する傾向にあると感じます。昭和の高度経済成長期の成功体験が、企業や家庭の古い価値観、さらには伝統的な家督制度とともに今も残っているため、その全否定は容易ではありません。しかし、時代の変化を受け入れ、アップデートと意識改革を行うことは国力維持にも欠かせないと考えています。個人差はあるものの、今後は定量的な指標が必要になるでしょう。 DX推進の方向性は? また、過去のビジネスモデルからの脱却が叫ばれる中で、現代が向かう方向性を見据え、周囲のメンバーを巻き込みながら省力化と省人化を目指すDX推進は、自身のミッションだと感じています。 温故知新って何を意味? 「捨てる」という言葉は、ALL or Nothingの印象を与えがちですが、日本人が得意とする阿吽の呼吸や蓄積されたノウハウ、そして文化の重要な部分は保持する方法があればと願っています。できれば、捨てる前に視野を広げ、改善の余地を模索する「温故知新」の視点を持った判断をしていきたいと思います。

クリティカルシンキング入門

ピラミッドで魅せる説得術

根拠の整理はどうする? 相手に自分の主張を伝える際には、まずどのような分類で根拠づけができるかを考え、それぞれの分類に対してできるだけ多くの理由を用意することが大切だと学びました。主張と根拠を混ぜず、各分類ごとに整理して提示することで、相手が主張と根拠の関係を理解しやすくなり、説得力を高める効果があると感じました。また、この関係を視覚的に整理するために、ピラミッドストラクチャーというツールが有効であることもわかりました。 観点整理は何が大事? 新しいプロジェクトを発足する際に、作業工数の見積りやスケジュール策定を行い、その根拠を上長に説明する場合、複数の要素をまとめて説明してしまうとわかりにくくなると反省しました。まずどのような観点で理由づけができるかを整理し、それぞれに根拠を用意して観点ごとに説明することで、より理解しやすい説明ができると実感しました。今後同様の業務が発生した場合、ピラミッドストラクチャーを活用して伝えたい内容を整理し、これまでの説明資料と比較することで、自身の説明がどのように変化したかを確認してみたいと思います。

「観点」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right