クリティカルシンキング入門

グラフで見る!データ視覚化の極意

グラフ化で情報処理を速くするには? 視覚化することの重要性を学びました。特に、グラフ化により情報の処理が速くなる点が印象的です。グラフを作成する際には以下のポイントを忘れないようにします。 まず、タイトルを工夫して、事実の実況中継にならないように一言加えることが大切です。また、単位や軸の原点を示し、フォントや色、矢印などで強調部分を表現します。ただし、アイコンを使用する際には視覚化の理解を促すものを選び、ノイズにならないよう注意します。 どんなグラフを選ぶべき? 自分が伝えたいこととグラフが合っているか、一目で理解してもらえるグラフの種類を選択することが重要です。また、メッセージに沿った情報配置にすることも大切です。そのため、「何となく」で資料を作成せず、データを丁寧に収集して、読んでもらえる、興味を持ってもらえるスライド作りを心がけます。 例えば、役員のスケジュールを分析する際、文章だけで結果を伝えるのではなく、グラフ化したスライドを挿入してみます。 良い文章の定義とは? 良い文章の定義としては、 - 目的が書かれている - 内容がしっかりしている - 読んでもらえる ことを意識し、文章作成の際のタイトルも事実の中継ではなく、アイキャッチを引くものを考えて、丁寧に書いてみます。 また、色々なスライドやグラフに触れてみて、データをグラフ化する際に棒グラフ、円グラフ、折れ線グラフそれぞれが得意とするデータを理解します。 視覚化の習慣をどうつける? 最後に、とにかくグラフを作ってみて、文字化で止めないで視覚化する習慣をつけることが大切です。

データ・アナリティクス入門

データのばらつきを活用した営業活動の最適化

標準偏差の重要性とは? 分析において「比較」が重要であり、その方法を学びました。特に標準偏差について具体的な事例を交えながら学んだことは、今後に生かせると感じています。 仮説思考の新たな視点 また、仮説思考についてはプロセス・視点・アプローチが具体例に挙げられ、理解が深まりました。プロセスにおける考え方はこれまでの学びとも共通しており、理解しやすかったです。しかし、「トレンド」と「ばらつき」の視点については、これまで感覚でとらえていた部分があり、それを意識する重要性を理解できました。これは仕事のみならず、さまざまな場面で活用できると感じています。 標準偏差で何を補完する? 営業活動や生産計画の立案において、これまで単純平均や中央値を使用していたものの、不足感がありました。それが標準偏差による補完だったと気づきました。私が扱う商材の販売動向を把握するために標準偏差を活用し、「ばらつき」を視覚化することで、感覚に頼るのではなく客観的な判断が可能になると考えています。これにより、同僚への助言もより具体的なものになるでしょう。 データ分析での新計画 既に明細別の販売実績データを持っているため、各明細の単純平均と標準偏差を求めることを計画しています。標準偏差が低い明細の生産・在庫管理を優先することで欠品を防ぎ、標準偏差が大きい明細についてはその理由を明確にして、将来的な需要予測に役立てたいと考えています。 同僚と知識をどう共有する? 最後に、この考え方を同僚と共有し、部門内で単純平均に依存することの危険性を共に認識するよう努めたいと思います。

データ・アナリティクス入門

マーケティング戦略を基礎から応用まで徹底理解

ナノ単科で得た学びとは? 今回のナノ単科を通じて、多くの学びを得ることができました。特に、マーケティングの基本的な考え方やその応用について深く理解することができ、非常に有意義な時間となりました。 基本概念の業務への活用 まず、マーケティングの基本概念を学ぶことで、自分の業務にどのように活かせるかを具体的に考えられるようになりました。特に市場分析やターゲティング、ポジショニングといった基本的なフレームワークを使用することで、より効果的な戦略を立案する基盤ができました。 具体的事例からの学び 次に、具体的な事例を通じて学んだことが大きな助けとなりました。実際の企業がどのような戦略を取っているのかを理解することで、自社の戦略にも応用できるヒントを得ることができました。この部分は、実務に直結する知識が多く、特に印象に残っています。 多様な視点を得る方法は? また、課題に取り組む中で自分の意見をまとめる力や、他の受講生とのディスカッションを通じて多様な視点を得ることができました。これにより、自分の考えの偏りを修正し、より広い視野で物事を見ることができるようになりました。 未来の業務にどう活かす? 最後に、今後の業務において今回の学びをどのように活かすかを考えています。マーケティングの基礎知識を活用し、より戦略的に物事を進めることで、組織全体の成果に貢献できるようになりたいと考えています。 以上のように、ナノ単科を受講することで得た知識と経験は、今後のキャリアにとって非常に有益なものとなりました。引き続き、学びを深めていきたいと思います。

データ・アナリティクス入門

ロジックツリー活用でKPI改善を目指す!

ロジックツリーって何? ロジックツリーの使用方法について新しい発見がありました。ロジックツリーには、変数分解に加えて「層別分解」という使い方があるのです。層別分解は、全体を複数の部分に分けて同じ次元で揃える方法で、それぞれの階層の下には同じ要素が並ぶイメージです。一方で変数分解は、要素の掛け算を分解し、原因を特定するのに役立ちます。これらの手法を試行することにより、より包括的で明確な分析が可能になります。 営業支援機能はどう? R&D部門における営業支援機能のひとつとして、顧客向けPoCの作成や自社商材のクロスセル・アップセルの立案があります。しかし、これらの活動においてチームのKPI進捗率に大きな差が見られます。そこで、KPI管理している指標の前段にある要素のKPI設定に漏れがないかを確認することが重要です。一連の要素には、要素A→B→C→PoC作成→D→E→クロスセルなどがあります。 KPI設定は見直す? 目的は、KPI管理している指標の前段にある要素のKPI設定に漏れがないかを確認することです。このために、まず関係者とブレストを行い、現在の管理状況に関わらず関連しそうな要素のアイデア出しを行います。その後、出てきたアイデアを元に、現在のKPI設定が定量的かどうか、またMECE(Mutually Exclusive and Collectively Exhaustive)であるかを検討します。このプロセスの中でロジックツリーを使用し、特に不慣れな現在は層別分解と変数分解の両方を試し、それぞれの使用感をメモしておくことが有効です。

戦略思考入門

営業から学ぶ効果的な組織改革の道

売上での判断は正しい? 営業を担当していたときには、クライアントの優先順位を売上だけで判断していました。しかし、リソースの使用状況や応諾率の可能性、利益額といった観点を考慮していなかったことに気付きました。 リソースは足りるか? 現在、私はエデュケーションチームのリーダーとして活動していますが、組織には大きな課題が存在しています。この課題に対して適切な対応策を打つためには、今のリソースだけで足りるのか、何を捨ててでも取り組むべきなのかを議論する必要がありました。そこで、売上インパクト、応諾率、効果、リソースの使用、実行可能性、利益額といった観点でタスクの見直しが重要だと感じています. 育成課題はどこ? 現在のミッションは営業人材育成に特化していますが、より広い視野で階層別に考えを発展させるべきです。業績向上のために必要な人材像が現状どうなっているのかを分析し、育成の課題を知識、テクニカルスキル、ポータブルスキル、マインド、スタンスのどの部分にあるのかを特定することが求められます。そして、不要なタスクを捨て、優先すべき点を明確にすることで、限られたリソースの中で最大の効果を出す方法を模索したいです. 理想組織の実現は? 経営戦略の実現に必要な組織像を定量的および定性的に確認し、理想の組織における管理職やメンバーのあるべき人材像も同様に評価します。現状の組織と人材の状況を、業績などの定量軸とES調査などの定性軸で確認します。理想と現状のギャップを整理し、課題に対する改善策を考える際には、やめるべきタスクと併せて施策を立案することが必要です.

デザイン思考入門

生成AIで顧客共感の新境地

どうしてペルソナが鍵? 生成AIのビジネス活用支援の立場から、生成AIの利用方法について考えました。自ら生成AIをどのように活用するかを検討し、実際の運用で示された課題を把握することは可能です。しかし、利用するお客様ごとに使用シーンや前提知識、目的が異なるため、彼らに共感し課題を正しく理解するには、ペルソナをしっかり定義し、その前提条件や目的、状況を想像して整理する必要があります。 顧客役割シミュレーションは? また、生成AIに顧客の役割を模倣してシミュレーションしてもらう手法も有効だと考えます。ペルソナで定義したユーザーとして課題を提示してもらうことで、要件定義のプロセスに新たな視点を加えることができるため、実践的な検討に大変役立ちました。 利用後の効果は何? 実際に利用してみると、生成AIからユーザー役として現実に即した質問が提起され、単なる想像にとどまらない網羅的な事前検討ができることが確認されました。従来、ユーザーを実際に巻き込む場合、コストがかかるという課題がありましたが、生成AIを用いることで低コストで実務に近いシミュレーションが可能となり、非常に参考になりました。 今後の展望はどう? 今後は、生成AIを活用してより具体的なユーザー視点からの課題提起やシミュレーションを実践し、顧客との共感を深める戦略に活かしていきたいと考えています。さらに、生成AIを使うことでペルソナの理解がどのように進むか、またそのシミュレーション結果をどのようにビジネス戦略に反映させるかについても、今後の課題として具体的に検討していく所存です。

アカウンティング入門

B/Sと減価償却で学ぶ経営の真髄

B/Sの見方はどう学ぶ? B/S(バランスシート)の見方について、全体像を把握することの重要性を学びました。具体的には、流動資産、固定資産、流動負債、固定負債、純資産の5つの項目の大きさを確認することが必要です。これにより、資金が有効に活用されているか、何に資金が多く使われているかをチェックし、売上成長に見合った適切かつ効率的な事業への投資が行われているかを確認できます。また、倒産の危険性がないかを確認するために負債についても分析が必要です。特に、借入が過剰でないかや支払い能力については、流動資産と固定資産に焦点をあてて検討することが大切です。 減価償却とは何か? 減価償却についても学びました。これは、固定資産の取得にかかる支出をその資産の使用期間にわたって計上する手続きで、価値が下がった分を費用としてB/Sに反映させます。減価償却の方法には定額法と定率法があります。 賃借対照表から何が見える? ある賃借対照表からは、流動資産、固定資産、流動負債が存在するものの、固定負債がないこと(無借金経営)を通じて経営状況を推測することができました。自社のB/Sを確認することで、これらの項目の大きさを把握し、今後の予測を立てることが可能になります。 また、原価償却について、自社での固定資産の棚卸を行った際、そのリストを基にして、B/Sにどのように反映されているのかを確認しました。自社のB/Sを確認する際には、資金が有効に活用されているか、売上成長に見合った投資がなされているか、流動負債と固定負債の割合やそれに関するリスクに注意を払います。

クリティカルシンキング入門

伝える力を磨く!実例で学ぶ報告術

伝える心構えはどう? 伝えることの心構えとして、常に相手の立場になって考えることが重要です。何を伝えたいのか、どのように伝わるのかを意識し、相手にとって理解しやすいように努めましょう。 伝え方ってどうする? 伝える方法については、フォントの大きさや色、斜線などの加工によって伝わり方が変わります。それぞれの加工にどのような意味があるのかを考慮し、適切に使用することが大切です。また、グラフは多ければ良いわけではなく、まとめられるものはまとめ、スライド内に置く順番にも注意を払いましょう。一般的には「左から右、上から下」に視線が移動するため、この順序を意識することが大切です。 報告の伝え方は? 私の業務は「伝達すること」が非常に多く、学んだことはさまざまな場面で役立つと考えています。たとえば、上長への報告や部内の売上報告会議、原料調達コストの他部署への報告、新プロジェクトの企画内容やスケジュールの紹介などです。特に部内の売上報告時には、実績や前年比、予算比などに対して、色付けや丸を付ける、下線を引くなど、何を伝えるかによって表現方法に気をつけなければなりません. 学びをどう活かす? 今回の学びを、特に「売上報告」を中心に活かしていきたいと思います。前週に学んだピラミッドストラクチャーを使用して、何を伝えるべきか、その理由をグループ化し、スライドに反映するときには、一つ一つのメッセージの表現を意識します。また、適切なグラフを活用することで、ただ数値を羅列したり文章だけでなく、相手に理解しやすい手段を模索していきます。

クリティカルシンキング入門

批判的思考で偏りを乗り越える学び

なぜ自分を見つめ直すの? 思考には偏りが生じやすいため、他者との会話を通じてその偏りを克服し、自身の気づきを増やすことが重要です。自分自身を批判的に見る習慣をつけることで、偏りを少しでも解消し、気づきを増やすことが求められます。そのためには、常に「なぜ?」「本当に?」と問いかける姿勢を持ち続けたいと思います。 経験は何を教えてくれる? 私の経験では、数値を用いた口頭や資料での説明が多かったため、自分で書いた文章をチェックする習慣がありませんでした。しかし、相手の立場になって考えることで、サボらないよう心がける必要があります。また、情報を視覚化する際には、過剰に図や表、グラフを使用してしまう傾向があったと反省しています。相手が情報を探さずに済むよう、シンプルで意図を持った視覚化を意識したいです。 本当に他はあるの? 上司や部下に対する説明や説得、財務諸表の作成、プロジェクト起案、日々のメールコミュニケーションにおいて、課題への対策が過去の経験に依存しがちなため、「他にないか?」と批判的思考を忘れず問い続けることが大切です。 問題を適切に課題へと変換し、課題への打ち手を決める際には「もっと他にはないか?」と自問できるようになることが目標です。また、ゼロから一を創り出す際に適切な方法で思考を進めたいと考えています。部下に対しては適切な問いかけを行い、コーチングによって育成を加速させ、上司に対しても適切な問いかけを行うことでより良い意思決定を促していきたいと思います。組織全体でイシューを共通認識化することを意識して取り組みます。

クリティカルシンキング入門

分解で見える本質への道

データ分解の意味は? データを多角的に捉えるための分解フレームワークを学びました。このフレームワークでは、①分け方を工夫する、②切り口を変えて考える、③複数の切り口を用いる、④導いた仮説が正しいか自問する、といった思考スキルを活用します。こうした手法により、データを正しく理解し、課題解決へとつなげることが可能になります。また、切り口を検討する際は、目的に沿ってMECEの原則を意識することが重要です。 顧客インサイトはどう? 現在、タスクチームで顧客インサイトに基づくConfidence活動を担当しています。顧客インサイトは、顧客ニーズの特定や戦略策定において重要な情報資源ですが、膨大なデータと多岐にわたる内容により、情報の整理や可視化に課題を感じています。さらに、目の前の数字や表にとらわれがちで、「そのデータから何を導き出すか」という視点が薄れることで、本質的な課題に辿り着けない可能性もあります。 分解スキルの使い方は? そこで、今回Week2で学んだ「分解」のスキルを活用し、データ分析に対する心理的ハードルを下げたいと考えています。まずは来月の顧客インサイト分析資料作成に向け、手を動かしてデータを分解することから始めます。その上で、目的に沿った複数の切り口を検討しながら、自分自身で問いを立て、データを深掘りしていきます。表やグラフなども試行し、情報をいかに伝えやすくするか工夫していきます。最終的には、使用した分析手法と見えてきた課題、そこから導かれる解決策を、チームメンバーに分かりやすく説明できるよう整理するつもりです。

クリティカルシンキング入門

クリティカル思考が未来を拓く

クリティカルってどうする? 1Wの講義で、特に印象に残ったのは、クリティカルシンキングに関する次の3点です。まず、クリティカルシンキングは、制約や偏りを起こさない正しい頭の使い方の土台となるという点。次に、客観的思考を持つ「もう一人の自分」を育てる役割を果たすこと。最後に、ビジネスの現場においてリスク回避につながる点です。これらの認識や改善が、今後のプレゼンテーションや作成物の価値向上につながると考えています。そして、受け手が分かりやすく判断できるよう、3視・MECE・ロジックツリーを駆使する力を身につけたいと思います。 業界の転換期はどうなる? また、自身の所属する業界は100年に一度の転換期を迎えており、ビジネスの方向性が不透明な状況です。不透明な時代を乗り切るために、継続すべき事柄、やめるべき事柄、新たに取り組むべき事柄を整理し、積極的に提案していく必要があると感じています。提案の際には、自分の考えを相手に的確に伝えられるよう、プレゼンテーション資料やメールといった作成物のレベルアップを図り、相手に刺さるメッセージを届けることを目指します。 提案はどう進める? さらに、提案の作成では、3視・MECE・ロジックツリーの視点を採り入れ、論理的で漏れや重複のない内容に仕上げます。説明にあたっては、クリティカルシンキングによる客観的思考を意識し、使用する単語やストーリーに注意しながら相手への説明責任を果たしていく所存です。本日4/25より、これらの点を意識し、業務の中で実践していくことで自己の定着化を進めていきます。

データ・アナリティクス入門

ビジネスにも活きる!ロジックツリー入門

ロジックで課題は見える? ロジックツリーを用いることで、曖昧だった課題や問題が階層分解や変数の使用を通じて、より明確に整理できると実感しました。また、ZoomなどのWeb会議の場で、ロジックツリーを活用しながら板書を行うことで、参加者が意見を出しやすい環境を作り出せることに気づきました。 損切りはどうすべき? サンクコストに関しては、新しい投資手段において、損失が出た場合の「損をしたくない」という心理的なバイアスが損切りを遅らせることがあると感じました。投資した株が収益性を見込めないのであれば、速やかに損切りを行い、収益性が期待できる他の株式に投資することの重要性を再認識しました。 データ選びの秘訣は? 以前、あるAI専業企業の方とお話しした際に「AIに入力するデータが現場の課題に適していないと、どれほど優れたAIであっても成果は上がらない。データ選定には全体の7割ほどの時間が必要」との意見を伺いました。この時、授業で学んだMECEや定量分析、ロジックツリーの重要性を実感しました。今後、工場内での課題解決を目指すAIのデータ選定にも、この知識を活用したいと思います。また、工場での品質管理の発表においても、ロジックツリーやMECEの考え方を活用して資料を作成したいと考えています。 競馬・テニスはどう活かす? また、競馬の予想にもロジックツリーや定量分析を活用したいと思っています。さらに、趣味の硬式テニスの大会後には、クラブの反省会でMECEなどの手法を取り入れられたら効果的だと感じています。

「使用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right