アカウンティング入門

BSで企業を丸裸に!戦略に活かす方法

資金の使い道と調達方法の理解を深めるには? BSの借方には資金の使い道が記載され、貸方には資金の調達方法が示されています。BSは企業の健康状態を示しており、余分な負債が多い企業か、純資産が多い企業なのかが分かるのです。しかし、「負債=脂肪=悪いもの」と考えるのは少し違うと思いました。企業の業種によっては、例えば不動産業などでは資金が必要になることが多く、自己資本比率が低いこともあります。また、節税効果も考慮しなければならず、自己資本比率が100%の企業が必ずしも良いわけではないと感じました。 BSとPLをどう活用するべきか? 自社のBSを確認し、競合のBSとの違いも確認したいです。また、同一企業のPLとBSを連結して確認するようにし、日経新聞を理解できるようになりたいと考えています。さらに、自社内での戦略議論に活用したいとも思っています。特に、「ROAやROAの改善」が求められている中で、バランスシートの精査や理解が戦略議論に欠かせない要素となっています。この投資がバランスシートにどう影響するかを考えるようにしたいです。 日経新聞の記事をBSで読むには? また、日経新聞の記事を見る際には、どのようにBSに反映されるのかを常に考えたいです。例えば、「自社株買いを実施」「○○が△△へ出資」「○○が△△を買収」などといった記事がどの項目にどのように影響を与えるかを考える習慣をつけたいです。 自社と競合のバランスシートをどう見極める? 自社のIRページを開き、バランスシートを頻繁に確認するように心がけます。その際、分からない項目があれば自分で調べ、講義で学んだように「資産」「負債」「純資産」を図にして理解を深めるよう努めたいです。同様のアプローチを競合企業に対しても実施したいです。

戦略思考入門

優先順位付けと新たな発見への挑戦

相手との関係性をどう考える? 演習を通じて、相手との関係性や取引額、さらには成長の可能性といった観点から優先順位を考えていました。しかし、後半では時間に基づいた利益という定量的評価も取り入れる視点を学びました。この判断基準が自分に不足していたことを痛感し、大変貴重な学びとなりました。特に、取捨選択のプロセスにおいて「捨てることで顧客の利便性が向上する」場合があることに気づかされました。具体的な事例に基づく判断は、実際には非常に難しいと感じました。 優先順位をどう設定する? 優先順位を設定する際には、様々な要因を整理することが重要です。特に取引額や避けるべき困難について深く考えることは、非常に良いやり方です。また、自らの判断基準が不十分であった点を振り返ることで、次のステップでの実践的な知識を得ることができるでしょう。 クライアントの評価基準は? クライアントへのアプローチでは、限られた時間の中でこれまでの関係性のみならず、時間をかけても成果が得られるかといった定量的な判断基準も取り入れて考えていきたいところです。ただし、私が担当している業務自体が新しいものであり、進め方を模索している段階です。そのため、これらの定量的判断をアプローチの優先順位に組み込みつつ、業務自体の必要性や無駄を検討し改善を進めていく必要があります。 改善を進める方法は? 現在のクライアントに対しては、売上高以外の指標、例えばLTVや自社サービスの活用度を見直し、それまでの関係性とあわせて優先順位を再考します。また、業務にかける時間に対する価値を改めて評価し、外部委託できるものがないかも検討します。さらに、自分だけで考えず、業務をあまり知らない人にも説明し、別の視点から意見を求めることも取り入れたいです。

データ・アナリティクス入門

データで見える真実: 分析の新たな視点へ

重要な三つのポイントとは? 私が特に重要と感じた点について整理すると、次の三つが挙げられます。 まず、「分析は比較なり」という点です。物事を細分化して整理し、各要素の性質や構造をはっきりさせることが求められます。また、具体的な比較対象や基準を設けることで、状態を把握しやすくなり、意思決定もしやすくなります。 データ分析の目的確認はなぜ大事? 次に、「データ分析を始める前に目的の確認をすること」の重要性です。仮説を立てて取り組むことが強調され、目的と照らし合わせながら比較することで、目に見えない情報を想像しながらの分析が可能になります。 最後に、「Apple to Appleになっているか」の確認が重要です。不適切な比較対象を避け、意思決定に役立つ分析を行うよう心がけなければなりません。 グラフの可視化はどう変わる? また、グラフの可視化においても学びがありました。データの種類に応じた加工法やグラフの見せ方を学び、「どんなデータを」「どう加工するとわかりやすいか」をより意識する必要があります。これを企画ごとのデータ分析に役立て、反響率や成約率、属性やエリアなど、比較すべき視点が今まで以上にあることに気づかされました。 実践にどう活かすか? さらに、作成するグラフの可視化方法についても実践していきたいと感じました。分析の本質をチーム内で共有し、分析に取り組む前の目的の明確化を意識することが必要です。そのうえで、これまで出してきた分析指標が正しい比較だったのか、新しい視点はないかを見直し、より良い意思決定に役立つものにしていきたいと思います。 企画運営の課題を定量分析によって発見し、根拠のある提案ができるようにするために、まずは学びを実践していくことが大切だと感じました。

データ・アナリティクス入門

分析で見える明日のカタチ

分析の目的は何? 分析とは、物事を具体的に明確化し、より良い意思決定へ結びつけるための手法です。より良い意思決定を行うには、まず目的をはっきりと定め、その達成に向けた具体的な比較対象や評価基準を設けることが重要です。 比較の意図は? 目的に沿った比較対象を設定することで、分析結果の見せ方にもメリハリが生まれ、伝えたい意図を明確に示すことができます。データの比較やグラフの工夫により、情報を読みやすく、効果的に伝えることが可能となります。 事例の意味は? たとえば、人事部門におけるデータ活用事例としては、以下のような取り組みが考えられます。制度導入効果の検証では、退職率や従業員満足度を過去の実績と比較し、制度の効果を測ります。入職・退職の動向把握では、社内や業界全体のトレンドを把握することが重要です。また、配置や異動の最適化、研修やスキル管理、エンゲージメントの可視化といった分野でも、データを基にした分析が行われています。 退職率の分析は? 具体的に退職率の分析に取り組む場合、まず上司との認識を合わせ、分析の目的を明確にすることが必要です。目的としては、人材の流出抑制や制度改革の効果検証、さらには業界・社内の現状把握などが挙げられます。 比較基準はどこ? 次に、自社内の過去の実績や、制度変更前後のデータ、同業界・同地域・同規模における最新のトレンド、さらには年齢や勤続年数といった属性別の変動など、具体的な基準を設定して比較を行います。 伝達方法は? さらに、複数のグラフや推移グラフ、色付けやサイズ変更などを用いて、分析結果の意図をより明確に伝えることが求められます。このような取り組みを通して、目的に沿った分析を進めることが、より良い意思決定へとつながっていきます。

リーダーシップ・キャリアビジョン入門

気づきを引き出す学びの術

なぜ報酬だけじゃない? モチベーションを上げるためには、まず相手のやる気スイッチがどこにあるのか把握することが大切だと感じました。そのため、衛生理論、動機付け要因、欲求五段階説といったフレームワークを意識し、相手が何を求め、不足しているのかを見極めるよう努めたいと思います。報酬(金銭的インセンティブ)についても、一定の効果はあるものの、一定以上ではモチベーションに大きな影響を及ぼさないことから、称賛や承認など、すぐに始められる方法の重要性にも気づきました。 どうして振り返る? また、仕事の振り返りに関しては、業務が終わったらそのままにしてしまうことが多かったですが、リーダーとしてメンバーの振り返りをサポートするために、より良い仕組み作りを目指したいと考えています。まずは自ら率先して良い面を伝え、相手に自分の言葉で語らせて気づきを促すことの重要性を改めて認識しました。 どうして記録が役立つ? 9名のチームメンバー各々のモチベーションの違いを踏まえ、日々観察してそれぞれの特徴をカルテのように記録することに努めます。フィードバックの場面は半期に一度にとどまらず、月1回のミーティングなど、相手の言葉を引き出す機会を増やしていく予定です。 自分自身の経験やアドバイスの欲を控え、メンバーが何にモチベーションを感じるのか、やる気の源泉はどこにあるのかを深く考えることが、チーム運営において最も重要だと思います。日々の業務のなかでメンバーをよく観察し、フィードバックに役立つ記録をつける習慣を作ります。プロジェクト終了後はまず称賛やねぎらいの言葉をかけ、その後で気づいたポイントや改善点を、メンバー自身の言葉で語らせるようにします。相手から話を引き出すための根気強さが大切であると常に意識していきます。

データ・アナリティクス入門

ロジックツリーで解決策が見えた!

問題解決の基本ステップは? 問題解決は段階的に考えることが重要です。まずは「What」として、何が問題なのかを明確にし、あるべき姿と現状を把握し、これについて周囲と合意を取ります。「Where」では問題がどこにあるのかを特定し、「Why」ではなぜその問題が起きているのかを分析します。そして「How」では、問題をどのように解決するかを考えます。 ロジックツリーで何が変わる? ロジックツリー(MECE:もれなく・だぶりなく)は、問題を解決する際のWhere、Why、Howの各段階で有効に活用できることがわかりました。これを様々なシーンで使えるように、もっと積極的に取り入れていきたいと考えています。 問題をどう分解するか? 問題を分解する方法には、層別分解と変数分解(掛け算)の2つがあります。これまで意識して使っていなかったので、状況に応じてこれらの方法をうまく引き出せるようにしたいです。 共通認識をどう持つ? 計画やあるべき姿が明示されていないケースが多くあります。このため、まずロジックツリーを使って問題を以下のように切り分け、可視化し共通認識を持つことが大切です。解決策を提案する際にも、すぐに実現可能なことだけでなく、様々な解決案を考慮し、長期的に良い方向に進むための基礎となる資料を作成していきたいです。 MECEをどう活用する? また、数値データでない分析においてはMECEを意識し、作業に取り掛かる前にWhatやWhereに時間をかけることが重要です。変数分解も選択肢として考慮し、「分析の本質は比較であり、意思決定のためのものである」という点を忘れずに実践していきます。今後は部下に教えることも視野に入れ、データを整理しながら作業するように心がけたいと思います。

戦略思考入門

戦略的思考で未来の組織像を描く

戦略的思考の本質は? 「戦略的思考」とは、適切なゴールを定め、そのゴールに向かって最速かつ最短のルートを描いて到達することを目的としています。これは仕事や日常生活においても自然と実践されていることであり、そのような例を考えることで経営戦略がより身近なものと感じられます。この手法は社内でも効果的に利用できるでしょう。 演習で気付いた点は? 実践演習での設問1について、考えたつもりでしたが、「再考した方が良い」というAIからのメッセージがありました。この経験を通じて、今後の学習においてどのように改善できるかを考えていきたいと思います。 目標の具体化は? まず、目指すべきゴールを明確にすることが重要です。例えば、将来どのような組織にしたいのかを明確にし、それを来年の組織目標に反映させます。これは現在の組織に課せられた役割を理解し、将来の組織像と結びつけた目標を策定し、社内で共有することから始まります。 やるべきことは何? 次に、何を行うべきか(やるべきこと)と何をしなくて良いか(やらなくて良いこと)を明確に選択します。自組織の業務内容を正確に設定し、必要なタスクのみを選択し、顧客対応や製品開発においてもその意義と方法を整備し、業務の効率化を目指します。 独自性をどう発揮? さらに、他社が真似できない独自性を持つことも重要です。例えば、顧客の声を効果的に収集し、常に顧客の意見を反映させる仕組みを整備することで、製品開発や顧客対応において独自の強みを発揮します。そして、その強みを社外にも積極的に情報発信し、社会貢献の一環として市場の活性化に努めます。 このような取り組みを通じて、自組織および顧客を巻き込んだ社会貢献活動を推進し、国内市場において更なる成長を目指します。

データ・アナリティクス入門

動きながら考える仮説の極意

どんな仮説が必要? 仮説とは「ある論点に対する仮の答え」であり、答えである以上、いい加減な内容では通用しないと実感しました。どのような仮説を立てるかが極めて重要であり、良い仮説を構築する方法について疑問が生じました。 原因をどう究明? また、課題解決の仮説は、単に「どこに問題があるか」と考えるだけでなく、問題箇所が特定できた場合でも、その原因を十分に掘り下げるプロセスが不可欠であると感じました。徹底した分析によって、問題の本質に迫ることが大切だと思います。 反論はどう除外? さらに、仮説はそれ自体以外の反論を排除しながら構築すべきだと考えます。まずは対象となる事象(What)を明確にしたうえで、問題の所在(Where)を適切に分解し、抜け漏れのない形で仮説を立てないと、説得力を持った論点整理は難しいのではないかと感じました。 対応をどう構築? 加えて、ある事象に対して対応時間が長期化しているという問題を例に考えると、What自体は把握できているものの、問題の具体的な所在(Where)に対する仮説が立てられていない現状があります。問題点をMECEに分解しながら仮説を検証するためにも、現場の実情を踏まえてまずは動いてみるというアプローチも一つの方法ではないかと思います。 試行で見える答え? こうした見解から、動きながら仮説を立ててみる方法が有効なのか、またその過程で優れたインタビューの実施にも注力する必要があるのではないかと考えています。同じように、受講している皆さんもどこに問題があるのか(Where)の見極めに悩まれているのではないでしょうか。まずは実際に動きながら仮説を試してみることが、より良い解決策へとつながると感じました。

データ・アナリティクス入門

朝活で実践!残業削減の挑戦

正解はどこにある? ビジネスにおいて、問題の「正しい」原因を特定するのはほぼ不可能です。ひとつの「正解」を求めるのではなく、さまざまな手法を試す中で気づくポイントがあると感じます。具体的には、What、Where、Whyの順に仮説を絞り込み、Howで実践するというステップを何度も繰り返すことが重要です。 根拠は見えますか? 原因を追及するためには、まず業務や問題をプロセスごとに分解すること。そして、考えられる複数の選択肢を洗い出し、根拠を持って絞り込む作業を行うことで、データに基づいた分析を進め、問題解決の精度を高めていきます。さらに、仮説を試しながらデータを収集し、結果を組み合わせてより良い解決策に導く方法が有効だと考えています。 実践の鍵は何? この考えをもとに、まずは自分自身の業務を一つのプロジェクトとして見立て、実践してみることにしました。具体的には、例に挙げられていた通り、残業時間を削減する取り組みから始めるつもりです。私の業務は3月から徐々に繁忙期に入り、5~6月がピーク。今回は複数の新規プロジェクトも同時進行しているため、学んだ知識を実際に試し、可能であれば周囲のメンバーも巻き込むことを目標としています。 朝の時間は有効? また、グループワークの際にも公言した朝の時間の有効活用を、具体的な行動計画として取り入れていこうと思います。早く出社するとつい業務に取りかかってしまいがちですが、少なくとも30分はこの計画に充てるよう心がけます。これまでなかなか実践できずにいたのですが、今週から出社時はカフェで、在宅時は始業前に、徐々にルーティンを整えつつあります。これからは、朝の時間をうまく活用し、残業削減プロジェクトを推進していく所存です。

マーケティング入門

市場分析で見えた新たな戦略

市場をどう切り分けるべきか? 市場全体を、一つの集団として扱う際には、不特定多数の人々を「同じ」性質でまとめるという方法があります。この性質には、人口動態や地理、嗜好などがあります。私自身、この切り分けに関してまだ自身の引き出しが少ないと感じるので、丁寧に行いたいと思います。 客観的な判断基準とは? 切り分けた結果については、市場の規模、市場の成長性、競合状況の3つの軸を基に客観的に判断することが重要であると理解しました。この3つは、自社の商品をよりニーズのある市場に届けるために、必ず抑えておきたい要素です。 セグメンテーションとターゲティングの違いは? セグメンテーションによって市場を絞り込み、ターゲティングでさらに具体的に絞り込むイメージです。その上で、自社の位置づけを優位にするように考える必要があります。位置づけの基準となる2つの軸について、自社が良いポジションとなることを考えつつ、顧客のニーズと合致することが購買に繋がるため重要です。 ポジショニングの課題にどう取り組む? 最終的に、ポジショニングの設定が課題となると感じています。そのため、2つの軸について更に検討を深めたいです。現在、競合と価格や規模、質で戦うことは厳しい状況にあります。そのため、何かに絞るのか、または広げるのか(リスクはありますが)、0から作り直すつもりで設計する必要があります。 競合が満たせないニーズをどう見つける? まずは、競合が満たせないニーズの発掘が必要です。自社のサービスがニーズに合うような分析を行い、戦略的に市場で戦うための方向性を模索します。今期の流れである程度の方向性が見えてくるため、来期に向けた選択肢を設けるステップを考えたいと思います。

データ・アナリティクス入門

分析手法でビジネス課題を解決!

問題発見に必要な分析とは? ビジネス上の問題や課題を発見するためには、影響の大きい部分から分析を始めることが重要です。そのため、現状を可能な限りヌケなくモレなく構成要素に分解する必要があります。特に事業収益を分析する際には、損益計算書が優れた例となり、経費がMECE(Mutually Exclusive, Collectively Exhaustive)に分解されています。 顧客属性分析で成功するには? 私の業務であるプロモーションにおいても、顧客属性や売上の構成を分析し、ターゲットとすべき顧客セグメントを抽出するのに役立ちます。売上や利益を伸ばすためにどのセグメントに焦点を当てるべきかという課題に対して、この方法は非常に有効です。しかし、広告媒体の効果検証には、ユーザーのタッチポイントが単一媒体に留まらないことから、複雑な分析が必要であるため、必ずしも適しているわけではありません。 ターゲティングの優先順位は? 具体的な分析手法としては次のようなものがあります。まず、店舗単位で顧客と問い合わせユーザーの住所や所属の件数を割り出し、ギャップが多いほど見込み顧客が多いと考えられるため、これを検証します。また、顧客の所属数と自社客のシェア率を把握し、優先的に取り組むべき所属を抽出します。ただし、店舗からの距離、競合の立地、ターゲット層の志向などにより、シェア率が低いセグメントが必ずしも優先順位が高いとは限らない点に注意が必要です。 Webと商品の相性をどう見るか? さらに、Web上での申し込み傾向を分析し、特定のカテゴリーで商品とWebの相性が良いかを分析することも重要です。これにより、より効果的なプロモーション戦略を立てることが可能になります。

クリティカルシンキング入門

データ分析で視野を広げる学びへの旅

データ分析の手法とは? データを見る際には、単に与えられた数字を眺めるだけでなく、自らデータに触れて比率などの必要な情報を引き出し、グラフ化することで、複数の視点から分析することが重要です。こうしたアプローチにより、データを多角的に捉えることができます。 MECEで現状を把握するには? データを分解する際は、MECE(Mutually Exclusive and Collectively Exhaustive)を意識することが大切です。同じ内容を繰り返すことなく、全体を漏れなくカバーすることで、現状を正確に把握できます。 具体的な分析の例は? システムや業務の分析では、具体的な例として航空券の購入フローや空港での搭乗フロー、整備フローなどを分解して考えることが挙げられます。また、売り上げ分析では、路線別や年齢別、搭乗回数別に分解してみることも効果的です。 業務に応用できるか? これらの手法は日常業務でも活用可能です。例えば、システム障害発生時の対応やアクセス数のデータ分析、WEBサイトへの攻撃分析といった場面でも役立ちます。 テンプレート活用の効果は? さらに、切り口のテンプレートを作成すると便利です。例としては、航空券購入から搭乗後までのプロセスを旅客の視点や業務の視点で分類することが考えられます。また、研修アンケートの分析にもこの方法を応用できます。受講前には思いもよらなかった角度からデータを切り分け、Tableauといったツールの活用も視野に入れると良いでしょう。 新たな視点が発見を生む? 日常業務においては、失敗を恐れずにデータを分解し、新たな視点で見ることがスタート地点です。こうした姿勢が新たな発見につながります。

「良い × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right