クリティカルシンキング入門

自分を超えるための思考トレーニング

クリティカル・シンキングを育むには? クリティカル・シンキングの重要な対象は「自分」であり、自分の意見を客観的に見るもう一人の自分を育てる必要があります。日々の生活で深く考えることができていないと気づかされました。スマホやAIに頼る前に、まず自分で考え、意見を持つことが大切です。 偏った思考をどう認識する? 自分の思考は「考えやすい方向」や「都合の良い方向」に限定され、偏る傾向があります。これを自覚することが第一歩です。他者との交流を通じて、自分の思考の偏りに気づく経験を数多く積み、反復トレーニングすることが重要です。異なるバックグラウンドを持つ人たちとの意見交換が役立ちます。 頭の使い方を学ぶ方法は? 「頭の使い方」を学ぶ過程では、感覚で答えを出すのではなく、まず考えを整理した上で答えを出すことを心がけます。 発言や報告、メールはシンプルかつ簡潔にすることを意識するべきです。考えを整理する習慣をつけ、ロジカルに整理された頭の中では、結論、目的、根拠を明確に述べることができます。これを常に意識しましょう。 どうやって考えを整理する? 考えを整理するために書き出し、リスト化する方法も有効です。独りで考え過ぎないようにし、異なる意見と交流しながら新たな気づきを得るように努めます。自分の思考は限定的で偏りがちであることを忘れず、常に意識しておく必要があります。 なぜ目的を自問する? さらに、答えを導き出す際に感覚に頼るのではなく、「目的は何か」「なぜそれが必要か」を自問自答することが大切です。他者の意見を聞く際も、これらのポイントに注目することで、より深い理解を得ることができるでしょう。

デザイン思考入門

受講生のリアルな学び物語

HP制作の7つの工夫は? HP制作にあたっては、以下の7つのポイントを意識しました。まずは「S(シンプルに)」で、詰め込みすぎた要望を極力簡潔にまとめることを心がけます。「C(統合)」では、似た内容を整理し、問い合わせなどの情報を一つに統合しました。また、「A(UIUXの模倣)」として、他の優れたユーザーインターフェースやユーザーエクスペリエンスを参考にしながら改善を図り、次に「M(SEOを意識したレイアウト変更)」で検索エンジンを意識したデザインに変更しています。さらに、「P(コンテンツのコラボ)」では、SNSやオウンドメディアと連携させることで、コンテンツの幅を広げています。「E(導線のシンプル化)」により、ユーザーが直感的に操作できるよう配慮し、最後に「R(見せ方と順番の変更)」で情報の提示方法を工夫しました。 ユーザー目線はどう? 特に、SとEの考え方が大切です。会社都合ではなく、常にユーザー目線を重視して、ユーザーが実際に体験しやすいタッチポイントを構築することが求められます。まずはアイデアを十分に発散させ、その後で整理していくプロセスが重要だと考えています。デザイン会社とのミーティングだけでなく、チャットなどを活用して瞬時にアイデアを共有できる体制を整えました。 完璧を求める意味は? 最初から完璧なものを目指すのではなく、大枠で全体の形を作成し、その段階でデザイン会社や社内から意見やアイデアを反映することを繰り返すことで、より良い成果に繋がると実感しています。また、社長向けの言語化には今後も苦労が予想されるため、自分なりの表現を確立し、あまり意見に振り回されないよう努めています。

データ・アナリティクス入門

広い視点で仮説を立てるコツ

なぜ複数の仮説が大切? 仮説を立てる際の重要なポイントはいくつかあります。まず、確からしい仮説がある場合でも、それに固執せず、複数の仮説を立てることが大切です。また、異なる観点から仮説を立てることで、見落としを防ぎます。特にフレームワークを活用することによって、網羅的に仮説を立てることが可能です。例として、3Cや4Pのような方法がありますが、分類に自信がなくても、広い視点で考えることが目的ですので心配ありません。 データ収集で何を探す? データ収集においては、比較対象を意図的に選び、反論を排除するための情報まで集めるようにしましょう。仮説を簡単に切り捨てないことがポイントです。 どうして視点を広げる? 売上が低迷している商品のリニューアルや新商品のコンセプト評価が思わしくない場合、特に3Cの観点から原因仮説や戦略仮説を立てることがあります。その際、視点が狭くならないよう、予測可能な答えをいったん頭から離し、第三者の視点で仮説を立ててみることが重要です。また、「顧客」と「競合」といった視点での分類に迷うことがありますが、分類自体に注力する必要はありません。仮説を排除した際の理由をデータで示す必要があるので、安易に仮説を切り捨てないようにしましょう。 フォーマットで何を改善? 仮説立てのフォーマットには、仮説を切り捨てた理由を記載する項目を設けることが有用です。また、「製品」に関しては、3Cだけでなく、「パッケージ」「味」「価格」なども考慮に入れたフォーマットに変えるのが良いでしょう。フレームワークを活用しても、一人では限界があるため、他部署の方々の協力を得ることも効果的です。

クリティカルシンキング入門

進むべき道を明確にする思考法

問いを立てる重要性とは? 問題解決においては、まず問いを立てることが大切です。なぜなら、問いを立てることで答えやゴールが明確になり、進むべき方向性が定まるからです。たとえ問いが間違っていたとしても、見直しをして再度問いを立てれば解決できます。 客観性をどう確認する? 物事を進めるには、自分の意見や考えが客観的であるかを問い直すことが必要です。人間は主観的な考えに流れがちなので、自分自身で客観性を確認する意識を持つことが重要です。これは日々の反復トレーニングが不可欠です。 視覚化はなぜ効果的? 視覚化の力は非常に有用です。伝えたい内容を適切なグラフにすると、相手に伝わりやすくなります。ポイントは、内容を選び、それに合ったグラフを選択することです。 クリティカルシンキングをどう活かす? コンサルタントという職業柄、クリティカルシンキングの思考やフレームワークを駆使する場面が多くあります。特に以下の四つを意識して実践しています。 まず一つ目は、日々の定型作業の改善意識です。なぜ必要か、もっと良い方法はないかを自問し、考えを周囲に話すことで賛同者を集め、改善案をまとめます。 二つ目は、資料作成力の向上です。問いを設定し、背景・課題・目的・対応策をグラフやエビデンスを用いてまとめます。 三つ目は、会議開始時の方向性合わせです。問いや目的、その日のゴールを全員で共有してから会議を始めます。 最後に四つ目は、会話を対話にする意識です。自己中心的にならず、相手の考えを汲み取りながらキャッチボールをするよう心がけます。 これらの意識を持ち続けることで、自分自身の成長と業務の効率化を図っています。

リーダーシップ・キャリアビジョン入門

小さな問いが生む大きな気づき

どう対処すべきですか? 実行・振り返りの際、過干渉は避けるべきとの考えから、状況に合わせたアプローチが重要だと感じました。特に、拠点が離れている職場環境においては、無理に関与しすぎず、メンバーの状態に応じた適切な対応が求められると実感しました。 会議で何を問いかける? 実際のミーティングでは、問いかけの方法を工夫して、メンバー自身から振り返りや気づきを引き出すことに取り組んでみました。短い時間の中でも、問いかけ方の違いによって相手が話す量が変化し、各人の状況をより深く理解する貴重な体験ができました。 なぜ動機は違うの? また、モチベーションのスイッチは一人ひとり異なると強く感じました。部署を離れて別のリーダーが担当している場合でも、各メンバーが前向きに取り組むためには、現在のモチベーションや働く動機をしっかり把握することが必要だと考えています。今後の評価会議に向け、各自の動機について丁寧に探っていきたいと思います。 どう実践効果を出す? さらに、WEEK3で学んだ質問力を活かしながら、PDCAサイクルやOODAループの実践を通じて、効果的なフィードバックを行う取り組みを継続していくつもりです。リーダー同士の協力や観察を通じ、メンバー一人ひとりの働く動機を深く理解することで、より良い対話が実現できると確信しています。 どの改善策が有効でしょうか? 最後に、業務における実践の中で感じた難しさや気づきを、毎週のミーティングや1on1での対話に反映させ、さらに業務委託先で決まった課題改善策の取り組みを通じて、自身のフィードバックのあり方についても自己評価を行っていきたいと考えています。

デザイン思考入門

現場の声から生まれた気づき

インタビューの目的は? 現在、製薬会社でデジタル関連のプロジェクトを担当しています。直近ではリリースしたWebサイトについて、一般ユーザーや医療関係者へのインタビューを実施し、そのフィードバックを改善のためのインプットとして活用しようとしています。ユーザーグループごとに利用方法が異なるため、グループに合わせた質問を準備する必要があります。具体的なプロセスとしては、①ユーザーインタビューの企画、②マーケティングチームへの情報共有、③プロダクトチーム内での対応優先順位の決定、④実装、⑤サイトのPVや滞在時間による成果計測、⑥さらなる対応の実施が考えられます。しかし、これらは予算の確保やインタビュー会社との契約など大掛かりな準備が必要なため、現段階では実践には至っていません。 CRM経験の教訓は? 以前の実践例として、営業で利用されるCRMシステムを担当していた際、現場での実体験がありました。実際に営業の1日を同行し、営業車内でCRMシステムについてのインタビューを行うことで、改善すべきポイントを見いだすことができました。その後、実際の改善対応を進めた結果、別の営業担当者からも好評のフィードバックを得ることができました。 本当に必要なものは? これらの経験から、作りたいものではなく、使う人にとって必要なものを作ることの重要性を実感しました。単に想像するだけではなく、現場を体験することで、何が必要であればより良いかを具体的に理解できるのです。また、体験をしていない人々に共感してもらうためには、インタビュー内容やプロダクト開発に至った背景を分かりやすくまとめることが今後の課題であると考えています。

データ・アナリティクス入門

課題細分化で見つけた成功への道標

ロジックツリーで課題を細分化するには? ロジックツリーを活用して課題を細分化することは、ビジネスにおいて非常に役立つと感じました。大きな課題はどこから手を付けてよいかわからないものですが、細分化することで優先順位を付けやすくなり、各課題の重要性に応じて対応することが可能となります。また、漏れなくダブりなく分析することも非常に重要です。分析や解決策に漏れやダブりがあると、無駄な労力ややり残しが生じてしまいます。そのため、MECEの視点で課題解決の計画を立てたり、分析方法を考えることが不可欠だと認識しました。この手法を今後の業務で活用したいと思います。 計画立案の重要性とは? 過去に私が業務課題へ対応した際、初期段階で計画を立てずに場当たり的な解決策を進めた結果、効果が限定的となり、打った策が効果を上げていたかどうかも分析できなかった経験があります。この経験から、最初にしっかり計画を立て、関係者の合意を得た上で解決にあたった方が良いと感じました。今後は、今回学んだロジックツリーの考え方を活用し、業務課題の特定や優先順位付けを最初に行い、効率的に解決策を立案して実行したいと思います。 成長戦略にロジックツリーを活用する方法 私は現在、自社の売上をさらに伸ばし、業務の質を高めるための戦略を考え、実行する部門に所属しています。この業務を担うために、今回学んだ考え方が非常に役立ちます。具体的には、グループ全体の業績、店舗ごとの業績、そして社員個々の業績までを細分化して分析し、業績をさらに高めるための課題洗い出しや対応策の立案に、ロジックツリーの考え方やMECEの視点を取り入れたいと考えています。

データ・アナリティクス入門

仮説とフレームワークで導く新発想

仮説の意義はどう捉える? 仮説の意義と4P・3Cのフレームワークの活用について考察しました。現状や現象を整理し、そこから課題を明示する方法としてフレームワークは有効な手段だと認識しています。しかし、設問では仮説の立て方が問われ、その内容が単に問題点や疑問点の抽出に留まっている点に疑問を感じました。仮説を「ある論点に対する仮の答え」もしくは「分からない事柄に対する仮の答え」と定義するならば、現状の把握とその先の打ち手を考察する過程で生じるのではないかと思います。このため、ビジネス上の意味合いに限定して用いるほうが適切であり、安易に「検証」という言葉を使わないほうが良いと考えました。こうした疑問を通じて、仮説とフレームワークの使い分けが整理できたと感じます。 4P・3Cの整理法はどうなる? また、事業計画や事業分析において、4Pや3Cというフレームワークで物事を整理する手法は非常に重要です。思いつきで捉えるのではなく、フレームワークに沿って取りこぼしのない視点で分析することで、発見された課題や問題点が具体的になり、改善策を立案するための基盤となります。さらに、第三者に内容を伝える際にも、論理的に整理された情報は理解しやすく伝わります。 正しい検証はどう進む? 実際の取り組みでは、4Pや3Cのフレームワークを活用した上で、問題点に対して「〇〇ならば▼▼である」という形式で仮説を立て、その上でデータ分析により課題の抽出ができるかを検討しています。これは、問題を具体的なエビデンスをもって示すためのプロセスであり、その後の打ち手の考察へと順序立てて進めることが重要だと感じました。

データ・アナリティクス入門

小さな仮説、大きな成長

なぜ仮説が必要? 仮説は非常に重要です。急いだり怠ったりして、仮説を立てずにいきなり方法論に入ると、結果として時間が余計にかかるか、誤った方向へ進んでしまう可能性があります。 どう検証すべき? また、仮説はあくまで仮の答えであり、その検証が必要です。検証のためには目的意識を持ったデータ分析が不可欠です。そのため、たとえ「答え」となりうるものであっても、複数の仮説を立てることが求められます。さらに、3Cや4Pなど異なる切り口を用いることで、問題全体を網羅的に捉えることが可能となります。 疑いは成長の鍵? 加えて、仮説の立証を目的としたデータ収集や分析においては、自身の仮説が誤っているのではないかという視点を忘れずに実践することが重要です。こうすることで、自分に都合の良いデータだけを集めてしまうことを避けられます。 原因はどう見極め? 実店舗の売上やPLに関する業務では、好調な店舗と不調な店舗が存在します。いずれの場合も、その原因を正確に特定し、好調なら通例に従い、不調なら改善策を講じることが必要です。これまで、まず膨大な時間をかけてデータを収集していたところを、仮説思考を取り入れることで、何が問題なのかを先に明確にし、仮説を立てることから対応するようになりました。 何を意識すべき? また、目につきやすい場所に仮説思考に関するポイントやステップを掲示し、常に意識できる環境を整えることも有効です。正解や不正解を問わず、失敗を恐れずに実践していくこと、日常的に課題意識や疑問を持つこと、そして先輩たちの実践事例や経験から学ぶことが、さらなる成長につながります。

データ・アナリティクス入門

仮説力で拓く新たな学びの旅

仮説とは何か? 仮説とは、論点に対する一時的な答えを意味します。仮説を立てる際には、決め打ちせず複数の可能性を検討することが重要です。フレームワークを活用して、どの指標を基準に、何と比較するか、またそのためにどのようなデータを集計し、どのように見せるかを考える必要があります。 データはどう取る? また、着目する指標や比較対象のデータを収集する際には、「誰に、どのように聴くのか」という点が大切です。都合の良いデータだけに頼ると、誤った仮説を前提にしてしまうリスクがあります。他の可能性を十分に考慮することで、不要な仮説を排除し、より正確な情報に基づいた議論につなげることができます。 議論はどう進む? 日常の業務においても、仮説をもとに論点を提示し、議論を重ねる場面が多いです。これまで経験や肌感覚から決め打ちしていた仮説も、複数の視点で検討することで、より網羅的かつ具体的な検証が可能になります。仮説を裏付けるデータの示し方や、どのように比較し、提示するかという方法も試行錯誤の対象です。 人事事例はどう見る? 人事領域の取り組みとしては、スタッフが出会い採用内定、入社からその後の活躍、さらには休職や退職に至るまでのジャーニーマップを構築した事例が挙げられます。まずこれまでの経験や収集できるデータをもとにストーリーとしてのジャーニーを描き出し、その後、ヒアリングや不足しているデータの補完によって仮説を検証・肉付けしていくという方法です。このとき、現状の仮説が網羅的かどうか、また他の切り口がないかを再確認し、データの取り方や示し方を見直すことが大切です。

クリティカルシンキング入門

考えを広げるクリティカルシンキングの力

自分の考えは正しい? 人は「考えたいこと」に囚われがちであり、その考えは容易に偏ったり誘導されたりします。そのため、客観的な視点、すなわち「もう1人の自分」を意識し、本当にその考えで良いのかを疑うことが重要です。 どう鍛えるべき? クリティカルシンキングを身につけるためには、日常的に繰り返し練習することが必要です。「本当にそれでいいのか」「他に視点はないか」といった疑問を常に思考に組み込む習慣をつけることで向上します。具体的には、クライアントへのメールや1on1の場面、家族との何気ない会話の中でもトレーニングを行うことが可能です。 他人の意見を聞く? 自分の論理を優先しがちですが、他人の意見から学ぶことが多い場合もあります。業務においては、例えば自社の損益にばかり気を取られ、クライアントの立場や利益を考慮しないことがあります。偏見に囚われず、フラットな姿勢で他者の話を聞く意識が必要です。 他の提案はどう? クライアントへのサービス提案時には、「これ以外の方法はないか」や「逆に〇〇のサービスはどうだろう」といった問いを自分に投げかけ、さまざまな視点から提案内容を考えることが鍵となります。提案する際にはシンプルさを心がけ、「なぜならば」という論理的な展開で一貫性を持たせます。そして、フィードバックを受ける際には偏りなく意見を聞く姿勢が求められます。 多角的な視点で? チームの目標設定においても、課題を分析し、「他の視点は?」と多角的な視点を考える必要があります。また、他のチームからの評価を通じて客観的にチームの強みや弱みを見極めることも重要です。

データ・アナリティクス入門

数字で見える学びの未来

どうして視覚化すべき? 数字に集約することと、目で見て理解することの大切さを再確認しました。纏めたデータをグラフ化するなど視覚化することで、ヒストグラムなどを活用しながらデータのばらつきを直感的に把握できる点が印象的でした。 比較で何が見える? また、データ分析は「比較」に基づく作業であり、仮説思考が重要だと感じました。分析のプロセスでは、仮説を立て、異なる視点とアプローチを用いることによって、より本質に迫ることができると理解しています。 代表値はどう使う? 代表値の使い分けと散らばり(標準偏差)を組み合わせる方法も興味深かったです。平均値や中央値、加重平均、幾何平均など、用途に応じた手法があるため、Excelで計算できることから複雑な計算式を覚える必要はなく、実務で活用しやすい点が良いと感じました。 成約率との関係は? さらに、営業活動のように暴露機会と成約率、またユーザーの購買意欲と成約数との因果関係を数値化する場合、代表値だけでなく標準偏差による散らばりを検討することで、ユーザーの傾向をより正確に導き出すことができると考えています。まずは仮説思考から取り組む姿勢が大切だと再認識しました。 グラフの魅力は? 最後に、提供される表形式のデータを様々なグラフで可視化し、検証のヒントを得る点も魅力的です。従来の平均値や中央値に加えて、標準偏差などの散らばりを取り入れることで、ユーザーの購買情報をより明確に把握できる可能性が広がっています。定性情報をいかに数値化してデータ分析に活用するか、その工夫が今後の課題であり、挑戦してみたいと感じました。

「良い × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right