データ・アナリティクス入門

新たな視点で挑む問題解決術

仮説はどう活かす? 今回の学びで、仮説は結論を導くだけでなく、問題解決に役立つ視点としての「問題解決の仮説」が存在することに気づきました。また、仮説には時間軸があることや、複数の仮説を立て網羅性をチェックすることで、偏りのない視点を保つことが大切だと理解できました。 データはどう扱う? また、データ収集においては、新たなデータを集めることに注目する一方で、手元にある既存のデータや一般に公表されている情報を活用する分析が軽視されがちである点に気が付きました。新しいデータの収集は楽しい面もありますが、一方で入手が難しい場合もあるため、状況に応じた柔軟な対応が求められると感じました。 手法はどう広げる? 現在、業務効率化のためにデータ収集を通じて行動様式の検証に取り組んでいますが、今後はデータ収集に限定せず、インタビューやアンケートなど多様な手法を組み合わせることで、より効果的な業務改善を目指していきたいと考えています。

クリティカルシンキング入門

データ分析で見つける、次の一手

分析の進め方はどう? 目の前の数字だけで判断しがちですが、一歩踏み込んで分析することで、より詳細で解像度の高い状況にたどり着ける可能性があることが分かりました。情報の収集とその情報の分析に工夫を加えることの重要性を学びました。 データ活用に自信は? 問い合わせ者データや来場者データ、購入者データなど、さまざまなデータを保有していますが、これらを有効に活用できていないかもしれないという良い意味での疑念を持ちました。それぞれのデータを分析して歩留まりの数や率を向上させるため、具体的な施策を行っていますが、より効果的な施策を実現するために、各段階での分析作業を実施する必要があると感じました。 改善点は見えてる? アンケートデータの分析(分解)を通じて、改善点を効果的に導き出すことができそうです。実施予定の施策の効率や効果性を向上させることができれば、得られる成果を今より大きなものに変えられるかもしれないと実感しました。

クリティカルシンキング入門

整理力で広がる学びと成長

情報整理のコツは? ピラミッド・ストラクチャーの考え方を学び、自分の頭の中の情報を簡潔かつ効率的に伝えるには、まず内容を整理し、どの情報をどの順番で伝えるかを考えることが大切だと実感しました。 上司負担を減らすには? また、社内承認を取る作業が日々多数発生する中で、口頭での承認のやり取りが多い現実があります。そのような状況で、上司などに時間的な負担をかけず、論理的に整理して相談できれば、組織全体の作業サイクルの改善につながると感じました。 毎回実践は難しい? さらに、毎週のように行っている作業を都度意識的に実践することが最も難しいと感じています。相手によっては、どれだけ事前に情報を伝えるべきかが異なるため、その人の状況を理解し、最適なアプローチ方法を見つけるまでにはある程度の時間が必要になると思われます。結局のところ、相談や連絡をする側が相手をしっかりと理解し、その人に合った連絡方法を工夫することが最善と確信しました。

戦略思考入門

自分と未来をつなぐ戦略思考

目指す姿は明確か? 仕事やキャリアを論じる上で、まず目指す姿を明確にし、現状とのギャップを認識することの重要性を再認識しました。最短距離でゴールに到達するためには、自分やチームの強みを踏まえ、限られたリソースの中で何を実行し、何を控えるかを意識する必要があると感じます。 未来設計はどう? 10年後のビジョン策定においては、明確なゴール設定が出発点です。どのような未来を描くのか、また現状をヒト・モノ・カネの観点からどのように改善すべきかを整理し、中長期的な行動計画に落とし込むプロセスは、戦略思考の具体的な活用と言えます。 短期と中長期は? また、短期プランでは過去の施策を参考にしながら、対象と目的を明確にして新たな施策の立案や既存の見直しを行い、即時実行へと移すことが求められます。一方で中長期プランにおいては、限られたリソースを効率的に活用するだけでなく、将来的なリソース拡充も視野に入れることが重要だと考えています。

データ・アナリティクス入門

ファネルで実感!変わる営業プロセス

ファネルをどう理解する? マーケティングのプロセスにおいて、いくつかのフレームワークを学ぶことができました。特にファネル分析は、従来は漠然としたイメージを持っていただけでしたが、具体的な用途や目的を明確に理解することができ、今後の活動に大いに活用していきたいと感じました。 顧客アプローチはどう? 例えば、営業対象の顧客に対してどのようなアプローチで認知から提案に至るまでの流れを作り出しているのか、また各段階でどの程度の確率で次のステップへ進めているのかを分析することで、自身の営業プロセスを改善できると考えました。 データ記録は有効? さらに、SalesForceなどを活用して自分の営業プロセスを各ステップごとに記録し、進捗率や最終的な受注率をデータとして明確に把握することが重要だと認識しました。このデータを基に、積極的に営業すべき顧客を見極め、効率的な営業活動につなげていきたいと思います。

データ・アナリティクス入門

シンプルな挑戦、未来への一歩

A/Bテストの魅力は? A/Bテストが注目される理由は、そのシンプルさにあります。限られた要素を2つ以上のパターンで比較することで、運用や判断がしやすくなります。また、テスト用の画像やテキストを用意するだけで低コスト、少ない工数で実施できるため、実験のハードルが低いのも魅力です。さらに、いきなり新しい案を採用する場合と異なり、段階的な改善によりリスクを最小限に抑えながら効果を測定できる点も大きなメリットです。 業務問題の解決策は? 日々の業務において発生する問題に対しては、「What」(問題の明確化)、「Where」(問題箇所の特定)、「Why」(原因の分析)、「How」(解決策の検討)というステップを意識し、効率的に対処しています。特に、問題の本質を捉えるために業務プロセスを細かく分解するアプローチを採用しており、複数の解決策を洗い出し、その根拠を基に最適な方法を選択するよう努めています。

データ・アナリティクス入門

実践へつなぐ振り返りのヒント

プロセス整理の効果は? これまでの学びを活かして課題に取り組む過程で、プロセスごとに整理して考えることで、闇雲に取り組むよりも効率的に時間を短縮できることを実感しました。今後は、What→Where→Why→Howの視点を意識しながら課題解決に臨んでいきたいと考えています。実務ではまだ訓練が必要だと感じるため、講義で学んだ自分の身近で取り組みやすい内容から実践していこうと思います。 データ活用の成果は? 2ヶ月前に新たな環境やシステムが導入されたため、その効果を検証する目的でデータを活用してみたいと思います。もし改善が見られない場合には、改めてWhat→Where→Why→Howのアプローチを試してみるつもりです。 新手法の可能性は? また、A/B分析の活用場面は現状の職場では明確な適用例は思い浮かびませんが、新たに検査項目を導入する際には有効な手法となる可能性があると考えています。

クリティカルシンキング入門

文を整理する力で効率UP!

文構造はどう伝える? 相手に伝わる文章を作成する際には、共通認識で正しい文構造を使用することが重要であると改めて理解しました。伝えたいことや目的、理由、根拠などをどのように要素分けするかは難しいと感じます。そのため、必要な要素を盛り込みつつ、粒度のばらつきをなくすために日々訓練を続けたいと考えています。 メールの使い方はどう? 日常の業務では、メールの使用が多く、チーム内だけでなく、支社や他チームへの報告や依頼も行っています。また、業務改善の企画や複数のメンバーとともに行うタスクもあり、コミュニケーションを通じて情報を正確に伝えることが求められます。 伝達方法はどう確認する? そのため、メールでは文構造や伝える内容をピラミッドストラクチャーで抽象化する練習を続けます。また、一人で完結させず、必要に応じて相手と会話をし、伝えたいこととの乖離がないか確認することも心掛けたいと思います。

アカウンティング入門

PL活用で利益を生む戦略を再考する

PLで見えるコストと利益は? PLを通じて、どの部分にコストがかかり、どの部分で利益が発生しているのかを理解することができました。それぞれの店舗のコンセプトに応じて、どこに重点を置いて計画を立て、利益を生むためにはどのような売上計画を立てればよいかを再認識しました。 自部署のコスト改善に向けて 自部署では、PLを活用してどの部門にコストがかかっているのか、改善の余地があるのはどこかを分析し、目標を設定して効率的な戦略を立てたいと考えます。また、なぜコストがかかるのかを過去のPLと比較して分析することで、PLをより有効に活用できるようになりたいと思います。 設備投資計画のリスク管理 私の担当する設備投資計画では、PLを活用して設備導入時の利益発生箇所やコスト発生要因を明確にし、投資リスクを考慮しつつ、効果的な設備投資を実施できるようにしたいです。

データ・アナリティクス入門

比較と仮説でつくる現場改善の秘訣

目的と仮説の効果は? 今回学んだ「目的を持った比較や仮説に基づく分析」は、土木現場における工期短縮、コスト管理、安全対策の見直しに大いに役立つと感じています。たとえば、過去の類似現場と比較して資材使用量や作業時間に差が見られた場合、その背景を詳しく分析することで無駄や非効率を特定し、具体的な改善策を立てることが可能です。 記録と検証の効果は? まずは、各現場の作業時間、コスト、事故件数などのデータを日常的に記録・整理し、月単位で過去の現場と比較する習慣を身につけたいと考えています。特に大きな差が見られる項目については、「なぜこのような結果になったのか?」という仮説を立て、関係者と意見を交わしながら原因を徹底的に究明し、改善策を現場に反映させていきます。小さな気づきも見逃さず、分析を日常業務に取り入れていくことを意識して行動していきたいと思います。

データ・アナリティクス入門

仮説と実践で拓く最適解

プロセス改善の秘密は? 問題解決のステップの枠組みを学ぶ中で、複数の切り口から解決策を検討するプロセスを整理する方法の大切さを実感しました。各プロセスごとに重要点に沿って仮説を立て、判断基準を明確にすることで、より的確な解決策が導き出されると感じました。また、A/Bテストを活用した検証手法からは、有効性の高い方法を見出す「実践的な知識」を得ることができ、今後の業務に大いに役立つと考えています。 アンケート改善のヒントは? 顧客アンケートを実施する際には、回答率向上のためにA/Bテストを導入し、仮説を立てながら改善点を洗い出すプロセスを試してみたいと思います。具体的には、EDMやイベント等を活用する方法の有効性を検証し、アンケート収集方法の効率化および精度向上に繋げることで、実務に直結する解決策を見出すことができると期待しています。

データ・アナリティクス入門

仮説で始まる主体的成長の一歩

仮説はどこから始まる? 仮説を持つことで、対象への関心が深まると同時に、問題意識も高まるという考え方は非常に理にかなっていると感じます。仮説がない状態では、物事への関心が浅く、問題意識も十分に芽生えにくいものです。しかし、一度仮説を立てると、その正否を自ら確かめようという意欲が生まれ、自然と検証に積極的に取り組むようになります。その結果、案件に対するコミットメントが強化され、より主体的に取り組む姿勢が養われます。 改善提案はどのように? この考え方は、業務における課題抽出や改善提案の場面にも応用できると感じます。たとえば、顧客対応の効率化や新しいサービスの導入検討において、仮説を立てて検証を重ねることで、単に課題を指摘するだけでなく、解決策の妥当性を自分自身で確認しながら主体的に進めることが可能になります。

「改善 × 効率」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right