データ・アナリティクス入門

仮説で切り拓く成長の道しるべ

ゴール設定はどう? 分析のゴール設定を常に意識し、単にデータ分析が目的化しないように気をつけます。仮説を立て、比較を通じてゴールにたどり着くプロセスを重視し、適切なデータの平均などの指標を選んでいく必要性を感じています。また、比較箇所以外の条件を統一しながら原因箇所を明確に捉えることも大切だと考えています。 複雑データはどう扱う? 人事業務では、多様な角度からのデータが関わるため、分析が目的となって袋小路に入ることが多かったと振り返ります。さまざまな要素が複雑に絡み合って事象が発生している点を念頭に置きつつ、常に分析のゴールを設定しそのゴールに向かって捉え続けること、そして仮説を立てる力を養うことを今後の課題にしたいと思います。 低評価の理由は? まずはエンゲージメント向上を目的とした取り組みから始め、低い評価要素の抽出や、それぞれの項目に対して低評価の理由について仮説を立てながら分析を進めていきたいと考えています。さらに、数値の高い部署と低い部署を比較することで、より具体的かつ実践的な分析を行う方針です。

デザイン思考入門

柔軟な視点で未来を拓く

なぜプロダクトアウトはリスク? 無意識にプロダクトアウトに偏った仮説を立てたり、収集したインタビュー結果から都合の良い回答だけを抜き出してしまうリスクについて学びました。自分の業務でも、マニュアルやルールに沿って考えがちですが、大切なのは相手の立場に立った提案を行うことだと感じています。 山と悩みの共通点は? また、先日のワークでは、登りたい山やその目的は人それぞれであっても、悩みの本質においては大きな違いがないことが分かりました。作業に取り掛かる前は、個人ごとに登る山や抱える悩みは多種多様だと考えていました。しかし、仮説立ては重要であると同時に、それに固執しすぎない柔軟さも必要であると実感しました。 課題定義は何を示す? さらに、課題の定義については、既存の枠にとらわれず、対極の視点からも考えることが求められると感じています。そのためには、視野を広げ、さまざまな知見を取り入れる努力や、周囲の意見を聞くことが重要であり、個人だけで解決しようとするのではなく、チームとして協力することが望ましいと考えています。

クリティカルシンキング入門

毎日の振り返りが未来を創る

今までの学びはどう? 今まで学んできた知識を多角的に活かす課題でした。一つ一つの学び自体は決して難しいものではありませんが、実際に身についているかというと、まだもう一歩という印象を受けました。日常的に自分の作成した資料や業務の進め方を振り返り、チェックすることが必要だと感じています。 提案と報告はどうなる? 企画の提案や上司への報告など、あらゆる場面で今回の学びを活用できるはずです。目的や課題を明確にし、相手の立場に立って考える姿勢を、日々の業務の中で当たり前にできるようになりたいと思います。また、重要なポイントはすぐに確認できる場所に貼っておき、仕事中にすぐ参照できるよう工夫したいと考えています。 知識は定着してる? 学習が終わっただけでは知識は定着しません。今後、実際に使う機会を設け、以下の方法で知識の定着に努めます。まず、重要なポイントをすぐ参照できるよう整備すること。次に、動画や資料を3日後、1週間後、1ヶ月後に復習すること。そして、可能な機会には後輩や子供に教えることで、自らの理解を深めたいと思います。

クリティカルシンキング入門

データ分析で実感した新たな視点の必要性

刻み幅の切り方はどう? データの傾向を把握するためには、「刻み幅の調整」が重要です。刻み幅によって、データの分布がどのように見えるかが変わるため、機械的な方法ではなく、どのように切ることで特徴が見えやすくなるかを仮説を立てて試みることが大切です。また、手元にある情報だけで判断すると視点が偏りがちなので、目的意識を持つデータ取得も必要です。 アンケート設計はどう進める? 今後、アンケート調査などを設計する際には、データの切り分け方を検討する際に役立てたいと思います。課題や事象の分析では、解釈の羅列ではなく、観点となる切り口を意識して情報を分解し構造化することが有効です。A for not Aの発想も活用できます。 定性情報はどう扱う? 業務においては、定性情報の示唆を分析する局面が多くあります。具体的には、プロジェクトのボトルネックの特定や、意思決定に影響を及ぼす要素の分析において役立てたいと考えています。ただし、定性情報を分解する際には、MECE的発想が必要かどうかを見極めたうえで活用することが重要となります。

データ・アナリティクス入門

未来へつなぐ分析のヒント

分析の目的は何? データ分析では、まず目的を明確にし、その目的に沿った意味のあるデータを比較することが重要です。分析結果からどのような結論が導かれ、どんな提案が可能かを考えることが、真の意味でのデータ分析だと感じました。過去の例を参考にしながらも、今回の学びで分析の意味付けがはっきりし、今後の学習に自信を持って取り組めるようになりました。 予算と現状はどう? また、次年度の予算獲得に向けて、現在の業務状況を客観的に伝える手段として、このデータ分析のスキルを活かしていきたいと考えています。各業務には固有の課題が存在するため、業務ごとに目的を明確にし、その目的に必要なデータ項目を検討することで、具体的な分析が可能になると実感しています。 指摘課題をどう見直す? さらに、すでに上司から指摘されている課題にも取り組むため、まずはメンバーと課題を共有し、目的に沿ったデータ項目の検討を進める予定です。その際には、上司とも現状や仮説について事前に共有できる場を設け、目的を明確に提示できるよう努めたいと思います。

データ・アナリティクス入門

データ分析でチーム力: 組織全体を強化する方法

仮説検証の重要性とは? 目的に基づいて仮説を立て、データを収集し、その仮説を検証するサイクル(プロセス)に視点とアプローチを加え、データを読み解くこと。その際、代表値を用いる場合、判断方法には多くの選択肢があり、散らばりも含め、目的やデータ自体に合わせて使い分けることが重要です。また、平均は外れ値に弱いことを忘れず、必要な対処を行うことが大切です。 成績把握のポイントは? 日次や月次ごとの担当者間の成績や能力を把握・分析する際には、課内メンバー間の横比較や個人の推移を確認します。その際、外れ値に注意しながら平均値を用いるのは有効です。これにより、適切な組織の人材配置や各担当者の対応許容量の検証・分析が可能となります。 組織全体の課題解決方法は? 担当者間の成績を日次や月次ごとに分析することで、横比較や個人の進捗を把握し、組織全体の課題解決の促進に向けて適切な手を打つタイミングや個人の対応許容量をデータで分析します。適切に個々の許容量を管理することで、弱点の強化策や適材適所の人材配置の判断材料として活用します。

クリティカルシンキング入門

視点を広げるための一歩

タスクの目的を深く理解するには? 現状、通常の業務で求められるタスクやミーティングでの意見求めに対し、その目的を深く理解していないことを再認識しました。すぐに手を動かしがちで、求められていることに対して表面的な理解に留まっています。そのため、何を求められているのかを明確に理解するために、熟考が必要だと感じました。 多角的な視点の重要性とは? グループワークを通じて、自分が一つの視点でしか考えていないこと、多角的な視点から物事を捉えられていないことに気づかされました。業務では、その場しのぎや自分にとって楽な考えに逃げがちな現状があります。まず、自分の考え方の癖を認識し、多角的な視点を意識して時間を費やすことが今後の課題です。 行動を開始する前に何を意識する? タスクやミーティングで意見を求められる際、すぐに行動を開始せず、まず目的を明確に理解した上で一旦立ち止まることを意識していきたいと考えています。また、自分には楽な考えに逃げる癖があることを認識し、様々な視点を試しに取り入れることを心がけたいと思います。

データ・アナリティクス入門

仮説実証で未来を切り拓く

どうやって目的を決める? 目的や目標を明確に定めた上で、必要な判断を下すための着眼点を学ぶことができました。事象におけるステップや因果関係を意識し、まずは分析の仮説を立て、その後実際のデータ解析を通じて検証しながら、問題を絞り込む手法が有効であると理解しました。 どう検証すれば確実? 問題解決型の業務においては、事前に予想される因果関係を各種ツールを用いて整理し、データで検証することで、より正確な判断を短時間で行うことが可能だと感じています。一方、課題創造型の業務では、目的と背景を基にツールなどを活用して仮説を組み立て、実践と検証を繰り返すことで、より良い業務実施につなげる方法があると考えます。 どう計画を固める? 改めて、まずはしっかりと目的と目標を決めることが重要だと感じました。関係者を巻き込み、十分な時間をかけて納得のいくプランを作り上げ、その上で複数の仮説を立てる必要があります。また、各種分析手法を実践する中で自分のスキルと経験を徐々に深め、より多角的な判断ができるようになりたいと考えています。

クリティカルシンキング入門

日本語の力を磨き、説得力ある文書を作成する方法

なぜ日本語の正しさが重要か? 日本語を正しく使うことの重要性を痛感しました。特に、主語と述語がぶれずに明確になっているかどうかを常に意識することが重要だと感じています。また、物事を伝える際には、目的だけでなくその理由も合わせて伝える必要があると感じました。 どうやって説得力を高める? 提案資料や報告書などでは、何を伝えなければならないのかという目的を明確にし、それに対する補足説明を適切に文書化することで、説得力のあるドキュメントを作成したいと思います。ロジックツリーはドキュメント作成以外でも課題解決に役立つ整理手法だと考えており、今後も積極的に活用していきたいです。 訓練で何が身につく? また、主語と述語の明確化は日常的な訓練により自然に身につくと考えています。日々の議事録、稟議書、報告書、提案書などを作成する際に、これらを見直す習慣をつけたいと思います。抽象的な目的を具体化する際には、ロジックツリーを使って整理することが効果的と感じており、計画立案時の具体策検討時に積極的に活用したいと考えています。

クリティカルシンキング入門

分解力で新規事業がスムーズに進行!

データ分解から得られる洞察 課題やデータに対して、すぐに解決策を考えたり分析するのではなく、まずは分解することが重要です。分解の仕方一つで見えるものも変わるので、丁寧に考えていくべきです。講義の中の課題では、一つの切り口で出た結論に飛びついてしまうことがありました。様々な切り口を試すことを念頭に置いて分解していけば、盲目的に飛びつくことはないと思います。 新しい観点での事業設計 新規事業を企画・設計する際、関わる人という観点が必要だと今までの講義で考えていましたが、プロセスで分けるという観点は新鮮でした。例えば、事業が始まってからの営業活動~契約~納品までのプロセスを丁寧に分解し、一つ一つのプロセスを固めることで、スムーズに事業をスタートできると思います。 事業開発を進めるための流れ 事業開発においては、プロセス⇒人という流れで考えるとスムーズではないかと感じました。業務のプロセスを分解し、そのプロセスの担当者に課題や問題点を確認し、解決していくことで、必要なメンバーを巻き込むことも可能になります。

データ・アナリティクス入門

目的明確で築く確かな結論

分析目的は何? 分析の目的を明確にすることは非常に大切です。何のために分析するのか、その目的をはっきりさせた上で、比較対象を可能な限り条件を揃えて行うことで、有益な分析結果が得られます。結果として、比較のためのデータ収集が重要なプロセスとなり、その積み重ねが有意義な結論に結びつきます。 品質管理はどうする? また、品質管理の業務においては、障害の原因分析や発生した障害に対する対策の有効性を検証する際にも、この手法が有効です。分析の目的が既に明確であれば、次に課題となるのは、比較対象となるデータの選定と収集です。その際、これまでの経験を踏まえ、しっかりと仮説を立てながら進めることが、正確で有意義な結論を導くポイントとなります。 仮説作成はどう進む? さらに、仮説を立てる場合は、個人の経験や知識だけに頼るのではなく、周囲の知恵や知識を共有して取り入れることが重要です。関係者との情報のやり取りが、より有効なデータの選定と収集につながり、最終的には信頼性の高い結論を導き出すための大きな助けとなると考えます。

データ・アナリティクス入門

分かると変わる!シンプル分析のすすめ

何がわかったら購入? パソコンを購入する際に、何を調べ、どのような情報が得られたら購入に踏み切るかという問いかけから、データ分析における「分析」の意味が明確になったと感じました。「分析」というと堅苦しくなりがちですが、「何がわかったら購入するか」というシンプルな視点を常に意識したいと思います。 意思決定のヒントは? 現状、組織全体でデータを活用して意思決定を行う文化が十分に根付いていないため、「何がわかったら◯◯するか」という観点を直接業務に取り入れるのは難しい印象を受けました。しかし、この視点を意識しながら業務を進めると、必要なデータや情報に気づく機会が増えると考えています。 新規事業の目的は? また、現在企画中の新規事業においても、「何が分かったら◯◯するか」という目的設定を明確にすることが重要だと感じています。特に、地域におけるアンコンシャス・バイアスの解消を目指す事業においては、目的が不明瞭な部分があるため、その課題解決の有用性をデータに基づいて説明できるようにしていきたいと思います。

「課題 × 目的」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right