クリティカルシンキング入門

思考の幅を広げるための秘訣

思考の視野を広げるには? 自分の思考は、慣れた方法にとらわれてしまいがちで、視野が自分中心になっていることに気づきました。これを解決するためには、視点を変え、視座を高め、視野を広くすることが重要です。まずは、どのように考えるかを意識することが大事です。相手には文章としてしっかり伝わるように心がけ、目的をしっかり見つめることが必要です。 目的理解の重要性とは? 大切なのは、ただすぐに行動を起こすのではなく、目的をしっかりと理解し、思考のプロセスを意識する時間を設けることです。プロジェクト内では、チームメンバーに目的をしっかりと説明したうえで、他の視点がないかを考えるよう促すことが役立ちます。また、業務内の小さなタスクについても、その目的を理解し、Alternativeな方法がないかを考える習慣をつけることが重要です。 問題解決の前に確認すべき点は? 問題解決に急ぐのではなく、まず目的をしっかりと理解しているかを確認します。その際に「なぜ」を繰り返し問い直すことも効果的です。自分の思考の癖を客観的にとらえるために、考えを紙に書き出すと良いでしょう。そしてミーティング中は、チームメンバーとともに目的の理解やプロジェクトの前提を確認し、多様な視点や視座、広い視野で議論ができる環境を整えることに努めます。

データ・アナリティクス入門

誰もが知る役立つ顧客データ分析の秘訣

分析目的の共有は済んでいる? 分析においては、まず目的をステークホルダーと共有し、判断の基準となる適切な比較対象を設定することが重要です。その後、グラフを用いて直感的に分析結果を把握できるように表現することが求められます。さらに、データが名義尺度、順序尺度、間隔尺度、比例尺度のいずれに該当するかを確認し、適切に扱う必要があります。 顧客データは適切か? 顧客情報の分析を依頼されることはよくあります。この際には、集計の目的をしっかりと理解し、対象となるデータが本当に適切であるかを確認してから分析を行うように心がけています。特に、分析結果が事前の予測から外れることがあります。その原因を探ると、対象外の顧客が対象データに含まれているという事例が多く存在します。 データグルーピングの確認 分析を行う際には、まず分析の目的と分析対象データの中身を事前に確認し、目的に対してデータの対象が適切であるかどうかを確認します。特に、データのグルーピングを行う際には、そのグルーピングが正しいかどうかを作業中でも確認することが重要です。提供されたデータには、抽出条件が不明確であったり、対象外のデータが混じっていたりすることが多いため、グルーピングの条件についてはステークホルダー間で共通認識を持つ必要があります。これを怠ると、分析をやり直すことになる可能性があります。

データ・アナリティクス入門

目的明確!整理から始める本気の分析

比較はどんな意味? 「分析は比較」という考え方は、これまでさまざまな講座で耳にしていましたが、「比較する対象を見出す」という点については、あまり深く考えたことがありませんでした。そのため、今回の学びを通じて、まずは「どんな目的で分析を行うのか」や「ありたい姿」と現状のギャップを整理(言語化)することに意識を向け、分析のスタート地点としてしっかりと理解を深めたいと考えています。 現状整理はどう進む? 業務では、依頼主から提示される課題に対して、その課題=「在りたい姿」と「現状」の整理が不十分なまま、すぐにデータに取り掛かることが多くありました。そのためか、「こっちだったかも?」や「なんかズレてきている?」という不安にかられ、進めていた分析で手戻りが発生することも多々ありました。そこで、データに触れる前に、一度しっかりと整理してから進めるべきだと改めて感じています。 新規案件の見通しは? 今回、新規の案件にあたっては、以下の点について整理しながら進めていく予定です。まずは分析の目的を明確にし、ありたい姿を言語化します。次に、現状の把握と、現在手元にある指標の洗い出しを行い、ありたい姿とのギャップを埋めるために必要なデータを整理します。こうしたプロセスをメンバー間で共有し、認識を合わせながら進めることが、より効果的な分析につながると期待しています。

クリティカルシンキング入門

プレゼンとメール改革で顧客を引きつける方法

「視覚化」って何? 「視覚化の目的」と「伝えるべきメッセージ」という言葉に、私自身とても驚かされました。日常業務の中で作成している報告書やメール、プレゼンテーション資料が単なる作業になってしまっていないか、と考えさせられました。これらの言葉に照らし合わせ、内容や表現が適切かを改めて見直していきたいと感じています。 プレゼン資料はどう伝える? 特に、会社紹介のプレゼンテーション資料やそれを送付するメールについて、活用と実践を重ねていく必要性があります。私は新規の潜在顧客を訪問する際に会社を紹介するプレゼンテーションを行うことが多いですが、現在の方法が十分かどうか、相手の知りたい情報をわかりやすく伝えられているかを再確認したいと思います。メールでも、丁寧に書くことを心がけていますが、書き上げると長くなりがちです。読み手にとって理解しやすい文章になっているかを意識し、より良いメール作成を目指したいです。 相手への意識は足りる? プレゼンテーションを見せる相手やメールを送る相手のことを常に意識することも重要です。相手の業界や事業内容に応じて、スライドを削ったり、追加や修正をしたりする必要がある場合があります。弊社に対するさらなる興味を引く内容になっているか、来週以降の新規訪問に向け、プレゼンテーションを見直し、修正することに力を入れたいと思います。

データ・アナリティクス入門

データで解き明かす!仮説立案の極意

仮説の種類と意義を知る 仮説とは、ある論点に対する仮の答えのことを指します。仮説には目的に応じて「結論の仮説」と「問題解決の仮説」がありますが、その中でも仮説は様々なフレームワークを用いて複数用意する必要があります。検証方法としては、データ収集が重要であり、目的対象を検討した上でアンケート調査や口頭調査を行うことが有効です。 打ち手を選ぶ際のフレームワーク活用法は? 業務に活用できる場面としては、打ち手の検討があります。問題解決のためにどの打ち手が効果的かを考える際には、フレームワークを用いてどこに効果があるかを検討することが求められます。ブレインストーミングから打ち手を選定する際にも、枠組みから検討し、その打ち手の効果測定や仮説作りのためのデータ収集が必要です。 フレームワークで複数視点を持つには? 複数の仮説を持ちながら物事を検討することは重要です。フレームワークを活用することで、様々な視点から会議に参加する準備が整います。そのためには、フレームワークの知識を習得し、何が論点になっているのかを正確に確認することが必要です。 データ検証の質を高める手法 データ検証の項目を洗い出す際には、目的が曖昧なままアンケート調査を行うのではなく、目的を明確に定め、それに沿った項目や枠組みを検討しながら実施することで、質の高い結果が得られます。

データ・アナリティクス入門

データ分析で見えた本当の価値とは

データ分析の目的を明確に データ分析は、目的を持たずに取り扱うと、ただの意味のない数字でしかありません。そのことを今回の学習で目の当たりにすることができました。データ分析を行うにあたっても、なぜその分析をするのかという背景が見えなければ、同じ数字でも全く違った見え方をしてしまいます。そこで重要なのは、何を目的として分析を行うのかを明確にすることです。目的意識を持ち、定量的にデータを取り扱うことの重要性を学びました。 データで組織をどう活性化? 施策推進について考えると、個々の受付完了指標から組織や部単位での比較まで、データの切り口は多岐にわたります。組織が正常に稼働しているか、個人については「自分は頑張れているか」を評価することができます。さらには、何をもっと伸ばし、何を改善すべきか、メンバーのモチベーションの維持・向上のためにデータを利用したいと考えています。 データの伝達手段は? データを出すタイミングについては、デイリーにするか毎月末にするかなど様々な選択肢があります。組織やプロジェクトチームが活性化するための指標として、データを積極的に活用していきたいと考えています。データの伝達手段もまた多様で、メールや対面、ミーティングなどがあります。伝えたい内容、そのボリュームや重要度に応じて手段を使い分け、効果的に展開していきたいと思います。

データ・アナリティクス入門

データに賭けた挑戦と発見

目標設定はどう? 「分析は比較なり」「何を明らかにしたいのか」という考えを軸に、データから得られる情報を見失わないため、まず明確な目標を設定しています。その目標に向かい、必要なデータやストーリーともいえる仮説を構築し、試行と検証を繰り返すことで、求める結果に近づけています。 データ表現はどう? また、取り扱うデータの種類に応じた加工方法やグラフの見せ方が重要であると感じています。そのため、状況に合わせて最適な表現方法を選ぶことに努め、いかなる場合も「とりあえず」での加工を避け、ビジネスにおける分析では、データに入る前に「目的」や「仮説」がしっかり整っていることを確認しています。 ランニング費用はどう? これまで部門費管理を想定していた中で、担当しているITツールのランニングコストについても、使用金額や実際の作業時間など、これまで取得してこなかった新たなデータ要素を活用していく計画です。これにより、必要なツールや今後の投資対象となるソフトウエアの分析に役立てようとしています。 データ収集の工夫はどう? さらに、データが不足している点を解消するため、まずは必要なデータの収集に力を入れると同時に、作業の効率化や一部自動化の導入も視野に入れています。今回の講座を通じて、時間の有限性を改めて認識し、これからはより計画的に活動していく所存です。

リーダーシップ・キャリアビジョン入門

部下と心を結ぶ!柔軟リーダーの極意

リーダーの役割は? 現代社会では、マネジャーはリーダーシップとマネジメントの両面を発揮することが求められており、状況に応じた行動(指示型、参加型、支援型、達成志向型)が必要です。リーダーとして、環境や部下の状態を適切に判断し、柔軟にアプローチを変えることが重要だと考えています。 新人部員への対応は? 例えば、入社一年目の部員は経験が浅く、自立がまだ十分でないため、まずは指示型のアプローチで業務の目的や進め方を丁寧に伝えていくことが大切です。業務に慣れてくるにつれて、徐々に支援型へと移行し、部員一人ひとりが自立して成長できるようサポートしていきたいと思います。 経験者はどう支援? 一方、長く業務に従事している実務職の部員は豊富な経験を有している一方で、仕事と家庭の両立を求められている状況です。そのため、常に見守りながら、必要な時には声をかけたり、サポートや業務の適切な振り分けを実施するなど、支援型のアプローチが適していると考えています。 対話の重要性は? さらに、フリーアドレスや在宅勤務などにより部員との関係性が希薄になりがちな現状を踏まえ、まずは一人ひとりと直接対話する機会を増やすことが必要です。自ら積極的に声をかけ、業務状況を確認できる場を設けることで、日頃から自分が部員に対して関心を持っていることを伝えていきたいと考えています。

データ・アナリティクス入門

仮説で切り拓く学びの未来

仮説の種類は何か? 仮説は、目的達成のための仮説や問題解決への仮説という2種類の仮説と、過去・現在・未来の視点を組み合わせた全6通りに大別されます。 複数仮説の効果は何? 仮説思考においては、複数の仮説を立てることと、その網羅性を意識することが重要です。網羅性を確保するためには、3C(Costmor、Competiter、Conpany)といったフレームワークを用い、さらにConpany分析の詳細については4Pの視点から整理することが有効です。 未来検証の焦点は? 未来型の目的に対する仮説検証では、目的達成のためにどのような考察や分析が必要かを事前に整理します。例えば、ある番組が視聴率を獲得できるかという問いに対しては、定型的な分析に入る前に3Cや4Pのフレームを用いて、どの部分にボトルネックが存在するのか、またそのボトルネックをどの程度克服できるのかという視点で考察を進めることが求められます。 仮説整理の進め方は? 依頼された仕事に取り組む際は、まずそれがどの仮説に該当するかを整理し、問題点についての仮説検証を行います。具体的には、WHAT、WHERE、WHY、HOWの順に問いを整理し、すぐにWHEREに入らないように注意します。そして、仮説の網羅性を保つために、フレームワークを意識しながら整理資料を作成することが推奨されます。

リーダーシップ・キャリアビジョン入門

エンパワメントで高める成長の秘訣

どうして余裕が必要? エンパワメントを効果的に行うためには、まず自分自身に余裕を持つことが重要であると学びました。忙しいときや余裕がないときに仕事を任せがちですが、それでは十分なサポートができません。求めるクオリティの成果を得るためには、適切な質問をし、相手の知識やスキル、経験をしっかり把握した上で、不足している情報をどのように提供するかを考慮する必要があります。このような対話を重ねることで、業務が常にストレッチゾーンにあるようにしたいと感じました。 どんな経験を活かす? まずは自分自身の余裕を確保することを意識し、何をエンパワメントできるかを常に考えることが重要です。エンパワメントを行う際には、過去の経験を振り返りつつ、必要な情報やサポートを慎重に見極めて進めていく必要があります。また、目的や目標を明確にし、共有するべき着地点を言語化することも大切だと考えます。 いつ進捗を確認する? 毎朝、エンパワメントの内容について考え、その計画を立てることを習慣にしたいです。質問すべき項目を5つ以上考えておくと良いでしょう。また、依頼した仕事の途中経過をいつ、どのタイミングで確認するかも計画に組み込んでおくことが重要です。相手を労りつつ、コンフォートゾーンから一歩踏み出したストレッチゾーンを目指す業務の負荷についても常に考慮していきたいと思います。

戦略思考入門

目的を追求するための問い直しの力

手段にとらわれないゴール設定は? ゴール設定の重要性は理解しているものの、気がつけば手段の巧拙に目を奪われてしまうことがあると再認識しました。最短の道が迂回路である場合も多く、遠回りに見える近道を見つけるのは難しいですが、手段の技術を磨きたいと感じています。 生成AIにおける限界とは? また、雑談の中で生成AIからうまく回答を引き出せないという話を聞くことがあり、質問力や言語化能力の難しさを改めて感じました。万能に見える生成AIにも限界があると理解し、仕事で生成AIを提案する際には、この点にもう少し配慮すべきだと感じています。 目的の抽象化はどう深掘りする? 目的には抽象化の階層があります。例えば、業務効率を上げるのは利益率を上げることかもしれません。業務効率が難しい場合、顧客回転率を上げるといった他の手段が費用対効果が高いかもしれないと考えています。このような目的の深掘りは意外と軽視されがちで、改めて意識することが大切だと思いました。 「So what」の問い直しの重要性? 目的を確認する際には、「So what」を1、2回ではなく、3〜5回問い直す習慣をつけるよう心がけたいです。これにより、より本質的な目的に到達でき、他の手段を広範な選択肢の中から見つけ出せるのではないかと考えています。

データ・アナリティクス入門

プロセス分解で業務改善の新たな一歩

プロセス分解の重要性とは? 問題の原因を探る方法として、プロセス分解が非常に有効である。例えば、広告であれば表示からクリック、クリックから申し込み(コンバージョン)といった形で細かく分解することができる。また、解決法(HOW)を検討する際にはA/Bテストが有効である。この方法では、比較対象以外の条件を揃え、目的を明確にすることが重要である。 数字だけではわからないことは? 現在の企画管理業務では、出てきた数字だけで分析や判断をしてしまうことが多い。しかし、出てきた数字の要因がどこにあるのかを探るためには、細かいプロセス分解ができなくても、大枠でのプロセスに分けて見ることができるのではないかと考えた。今回の講義を通して、A/Bテストの有効性を学べたが、A/Bテストの範疇を超えた検証(生産プロセスの改善や販売における改善検証)のやり方についても学びたいと思った。 データ分析の効率化をどう進める? 講義では、身近なデータを使ってプロセス分解を行う方法について触れられた。日々の業務におけるデータ分析のスピードアップや、分析に十分な時間を確保できているかを検証する必要を感じた。具体的には、データ収集、データ加工、分析、共有にそれぞれどれくらいの工数がかかっているのかを明確にし、さらに効率化して、より早く深い分析と共有を実践できる方法を探りたい。

「目的」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right