データ・アナリティクス入門

数値が導く学びの冒険

数字はどう見える? まず、数字の見方について考えると、仮説を立てた上でデータを収集し、その後の分析で仮説の検証を行うという流れが基本だと感じました。AIを使って情報を収集する場合でも、自分なりの考えを持ち、AIから得られた情報と自分の意見を照らし合わせることが大切です。もしも自分の予想と結果が異なった場合、その違いがどこから生じたのかを考えることで、新たな学びのヒントが得られると実感しています。 代表値はどう見る? 次に、データの見方としては、代表値に注目しました。単純平均、加重平均、幾何平均、中央値など、データの性質や目的に応じて使い分けることが必要です。また、散らばりを示す指標としては標準偏差があり、これらの数値をグラフ化することで、直感的に状況を把握できる点も魅力的だと思いました。 業務の数値活用は? 普段の業務では、商品の売上や原価、コストダウンの検討などで、いろいろな平均値を算出することが新たな発見につながるのではないかと感じています。そして、その結果を他者に説明する際に、グラフを活用することで、理解を深め、合意形成をスムーズに進めることができると確信しています。 AIで何を発見? 日常の業務の中で、実際に数値をAIに入力して計算やグラフ化を試みることで、これまで気づかなかった事実や見逃していた視点を発見できるのではないかという期待があります。来週には、何かの案件で試してみるつもりです。

リーダーシップ・キャリアビジョン入門

フィードバックで未来を拓く

論理構造はどう? 評価面談のロールプレイでは、課長とBさんのやりとりを通じて、伝える内容の論理構造が非常に印象に残りました。まず、Bさん自身に振り返りをしてもらい、その過程で労いの言葉をかけることの重要性を実感しました。また、期待値とのズレを具体的な事実に基づいて共有することが、納得感を得るために効果的であると学びました。 普段の対話はどう? さらに、評価面談の場面だけでなく、普段の対話においても日々のフィードバックが大切であると感じました。小さな良かった点や改善点をその都度明確にすることで、お互いの理解や方向性のすり合わせがスムーズになります。このアプローチは、一度に多くの情報を伝えるよりも、継続的な対話を通じてエンパワメントを促す効果があると実感しました。 1on1での傾聴は? また、1on1でのコミュニケーションにおいても、相手への傾聴を重視する点が印象的でした。状況や出来事、自己の行動について問いかけながら、気づきや反省を促すことで、客観的なフィードバックがより伝わりやすくなると感じています。期待とのギャップを都度明らかにし、具体的な改善アイデアを共有する姿勢は、今後の場面でも活用したい重要なポイントです。 成長への一歩は? これらの学びを基に、今後は評価面談や1on1で、目的に沿った明確なフィードバックとフォローアップを実践し、関係者全員のエンパワメントと成長に寄与できるよう努めます。

クリティカルシンキング入門

正しい日本語の力を実感した学びの旅

正しい文章はどう作る? 正しい日本語という観点についてはあまり意識していませんでしたが、改めてその重要性に気づく機会となりました。誤字脱字やら抜き言葉、主語と述語の抜けや間違いといった明確なミスがある一方で、正解となる文章を定義するのは難しいとも感じています。これは慣れが必要な部分です。また、ロジックツリーもMECEと同様に、複数のパターンが考えられるため、目的に応じた適切なパターンを選定することが重要です。柱を立てる、対の概念を用いる、具体化するというプロセスは理解できましたが、その柱が本当に目的に適しているか慎重に検討することが必要だと実感しました。具体化の際には定量的な指標や第三者から見ても理解できる言葉で表現することが大切です。 技術意義は何だろう? 現在進めている新技術の実証実験プロジェクトにおいて、お客様から「この技術は何のために実施しているのか分からなくなってきた」というコメントをいただきました。このため、その技術の意味や意義、位置づけを整理する必要があります。今回学んだ内容は、まさにこの整理に役立つと感じたので、今後実践してみたいと考えています。 実験はどう進む? 今週は、新技術実証実験に関する技術の定義やその意義を、ロジックツリーとMECEを意識して整理します。来週には、お客様とともにこの整理した情報を用いて、新技術の価値やお客様のビジネスへの影響度合いを議論する予定です。

戦略思考入門

「捨てる判断で顧客満足度アップ!」

捨てる判断の本質は? 実践演習で最も印象に残ったのは、「捨てる判断」を明確化することでした。目的や指標、課題、そして自身がかけた工数など、さまざまな視点から判断をする重要性を学びました。これまでは工数ばかりが判断基準でしたが、工数がかかっても必要なこと、逆にかからなくても不要なことを見極める必要性を認識しました。この理解が不十分だったので、大変勉強になりました。また、不要なものを捨てることがかえって顧客の利便性につながることも参考になりました。過去の惰性で物事を増やすのではなく、根拠を持って捨てることの重要性を学んだのです。 定量行動の意味は? 今後の企画立案では、この学びを特に意識して取り組んでいきます。特に、定性ではなく定量を意識して行動することが重要です。効率的・効果的に目的を達成するためには、定量的な判断が不可欠です。この判断は、さらに投資をする価値があるのか、あるいは捨てるべきか、方法を変えるべきかという貴重な基準になります。これを意識しながら行動していきます。 効果的実践のステップは? 実践に向けたステップとして、目的や方針の確認、情報の掘り下げ、定性的内容を定量化すること、現状の成果と課題の把握、時間軸をベースとした成果の評価、そして課題解決に向けた優先順位付けを行っていきます。さまざまな選択肢が出てくることも予想されますが、周りの意見も参考にしながら計画を策定していきます。

データ・アナリティクス入門

視野を広げる学び方の発見

学びの振り返りはどのように? これまでを振り返り、学びを得たことを自分の言葉で再度まとめることができる場があり、復習に繋がりました。また、リアルタイムでの講義には参加できなかったものの、自分一人で考えるだけでは視野が狭くなる可能性があるため、参加できなかったことが悔やまれます。 分析のストーリーが重要? その中でも特に印象的だったのは、スライドで示された「やみくもに分析しない。ストーリーが大事!」という点です。傾向をつかみ、特に見るべき箇所を明らかにし、網羅的にデータを収集して分析することの重要性が強調されていました。これにより、言語化・教訓化・自分化が進められると感じました。 自己研鑽と業務改善のステップは? 学習方法については、自身の癖を認識しているため、現在バイアスに押し負けないように自己研鑽に励みたいと思います。特に、問題解決が業務の中心であるため、そのステップに基づいて業務を進めたいと考えています。また、過去の経験則で決め付けることが多い内部問題の洗い出しと改善にもつなげていきたいです。 業務指標の整理はどうする? さらに、毎月提供される業務指標が様式も保管場所もその時期もまばらであり、単体に存在している現状があります。これを単体で取り扱うのではなく、日々起きる問題に備えてまとめておくべきだと感じました。目的に合わせて必要なデータをいつでも引き出せるように整備しておきたいと思います。

クリティカルシンキング入門

問いと内省で開く成長の扉

問いの出発点は? まず最初に、常に問いを立てる姿勢が大切だと感じています。抽象的な問いをそのまま受け止めず、具体的な内容に落とし込むためには、出発点そのものを疑うことが必要です。自分が今何に答えようとしているのか、常に意識することで、無駄な情報に振り回されるのを防げると考えます。 学びは実践できた? 講義を受けたときは学んだ気になっていた部分も、実際に実践してみると忘れてしまっていることが多いと痛感しています。そこで、反復して復習し、学びを確実なものにする努力が必要だと感じました。 問いと仮説は合ってる? また、データ分析や示唆出しの骨子を作成するときは、まず何に答えようとしているのか、その問いと仮説を明確に立てることがポイントです。資料作成に熱中するあまり、本来の目的から逸れてしまわないよう、問いに立ち返ることが効果的だと思います。 フィードバックは活かせる? さらに、月次の振り返り発表では、他のメンバーの資料を事前に読み込み、フィードバックの質を上げることに努めています。普段、上位の方々との会話では迎合しやすい自分を見直し、しっかりと自分でイシューを考える意識を持つようになりました。 内省で成長中? 毎日終業前の15分間は内省の時間として、今日学んだことが実践できたかを必ず振り返るようにしています。この内省を通して、小さな気づきを積み重ね、常に自己成長を意識するように努めています。

クリティカルシンキング入門

グラフと装飾の新発想で資料改善!

グラフ選びの理由は? グラフの選び方について、これまでは感覚的に選んでいましたが、今回の講座で得た知識との差異はありませんでした。しかし、具体的に「このような場合はこのグラフを選ぶ」という言語化ができていなかったため、今後は理由を持ってグラフを選びたいと考えています。 文字装飾の見直しは? 文字装飾の選び方についても学びがありました。装飾は「付け足す」のではなく、「削る」ことが重要だということです。学生時代に、赤字や太字、下線で強調した際に「やりすぎだ」と言われた経験もあり気を付けていましたが、特にタイトル位置では装飾が不要であるという点は新たな学びでした。 報告資料の工夫は? 分析データの報告時にこれらの知識を活用したいと考えています。普段は分析データに触れない他部署の人に報告資料を送ることがありますが、ここで適切でないグラフが使われていたり、全体の構成が不明確だったりすると、受け取る側が混乱してしまいます。そのため、「何を伝えたいか」に焦点を当てて資料を作成していきたいと思います。 発信方法の確認は? 具体的には、次のような行動を心掛けたいです。まず、伝えたい目的やメッセージを明確にし、その次に、どの順番で何を並べるかスライド全体の構成を考えます。そして、必要な文や適切なグラフを配置し、補足や強調は最低限に留めます。最後に、読み返しながら、伝えたいことが相手に無理なく伝わるかを確認します。

データ・アナリティクス入門

比較思考で紐解く学びの極意

分析の意味は何? 「分析は比較なり」という言葉は、普段何気なく耳にするものですが、今回改めてその意味を強く感じました。データ分析において、必要な情報を集めることに注力し過ぎるあまり、単にデータを並べただけで満足してしまい、見る人によっては分析結果の捉え方に差が生じる場面があったと実感しています。動画学習では、適切な比較対象を選ぶことの重要性にも触れ、データを揃える行為は無駄ではないものの、分析の目的や見せ方を意識しなければ本来の意味での分析にならないということを認識しました。 物流の選定はどう見直す? この考え方は、物流部門における利用業者の選定や見直しにも応用できると感じます。たとえば、ある条件がある場合とない場合で、一律運賃が設定される荷主とそうでない荷主の運賃総額を比較する手法が考えられます。 大手と中小の差は? また、単純に大手業者と中小業者を料金面で比較するのではなく、企業の規模や対応する配送範囲が同様である業者同士で運賃を比較することが、より適切な分析につながると理解しました。 比較対象の妥当性は? さらに、自分が揃えたデータが本当に比較に適したものかどうか、常に振り返りを行うことが大切です。普段利用している輸送業者に注目し、過去の実績が明確な業者だけを比較対象にしている現状を見直し、新たな業者や新しい地区の業者も検討することで、より多角的な視点を持つことができると感じました。

クリティカルシンキング入門

考えを広げるためのクリティカル・シンキングの重要性を学ぶ

発想の制約から解放される方法は? 自由に発想できるにもかかわらず、人は無意識のうちに考えを制約してしまうことを知りました。理解していても制約や偏りは起こるため、これを防ぐためには「頭の使い方」を知ることが大切だと学びました。この「頭の使い方」はクリティカル・シンキングで学ぶことができるので、今回の6週間の受講を通じてしっかり身に付けたいと思います。また、各演習や皆さんの発表を聞く中で、自分の考えの浅さや視野の狭さにも気づかされました。 企画力を高めるために何をすべきか? 自分の考えを客観的に眺め、自問自答することで徹底的に深掘りを行いたいです。徹底的に深掘りをし、考え抜くことで、自分自身の考えに自信を持ち、発信時にも堂々と伝えられるようになりたいと考えます。 業務の目的をどう見直す? 自組織の運営を行うにあたり、既存業務の効率化や廃止を検討する必要があります。ただ効率化や廃止を行うのではなく、その業務の目的を含めて考えることが重要だと感じました。 業務において何かを考えたり発言したりする際には、「自分の思考を客観的に眺め、チェックすること」「なぜを繰り返すこと」を習慣化したいと思います。また、自組織において上司や他のメンバーと個別に話す機会が多いため、自分の考えを頭の中で考えるだけでなく、積極的に他者に意見を求めることで、思考に偏りがないかや、客観視できているかを確認したいと思います。

データ・アナリティクス入門

ひらめきと検証、学びのワクワク旅

仮説とは何だろう? 仮説とは、ある論点に対する仮の答えや、まだ十分に理解できていないことに対する仮の答えのことです。目的に応じて、結論の仮説と、具体的な問題解決を推進するためのプロセスに沿った問題解決の仮説に分類されます。 なぜ複数を検討する? 仮説を考える際は、まず複数の仮説を立て、ひとつに固執しないことが重要です。異なる視点から複数の切り口を用意することで、網羅性のある考察が可能となります。 どの要素を比べる? また、検証の際には、どの要素を比較するのかという意図を明確にしながら進めることが肝心です。単に何となく比較するのではなく、仮説に対する反論に対応できるよう、比較対象となるデータを計画的に収集してください。データ収集時には、誰に、どのように質問するかが回答結果に影響する点にも留意する必要があります。 どうデータを公平に扱う? さらに、検証データを集める際は、自身の都合の良いデータだけに依存せず、フラットな気持ちで客観的にデータを扱いましょう。説明資料を作成する際には、想定される反論やコメントにも対応できるよう、十分な根拠となるデータを盛り込むことが求められます。 検証習慣はどうある? 日頃から、仮説とそれを裏付けるために必要なデータの関係性を意識し、どのようなデータがあれば検証に役立つのかをセットで考えておく習慣を身につけることが、効果的な問題解決に繋がるでしょう。

戦略思考入門

実践で切り拓く夢への一歩

学びの意義は何? 学生時代は、将来役立つ知識を積み重ねることが目的でしたが、社会人になってからの学びは実践によって意味が生まれます。学んだことをすぐに行動に移し、フィードバックを受けながら次の学習につなげるという意識の大切さを、常に心に留めています。 タスクの選び方は? 目の前のすべてのタスクに手を出すのではなく、長期的な目標達成に本当に必要な事項を見極めることが重要です。限られたリソースを有効活用するためには、何をすべきかだけでなく、あえて行わないことを明確に定める考え方が欠かせません。 戦略的思考はなぜ? また、私は既存の事業とは異なる技術を用いて新たな市場への進出を検討するプロジェクトに携わっています。そのため、戦略的に物事を考える姿勢は基本の一つです。短期的な目標の達成だけでなく、長期的なビジョンを描くこと、そして計画通りに進まなかった場合の対策まで、常に多角的に検討する必要性を実感しています。 目標検証の意義は? 現在掲げているプロジェクトの目標については、自分なりに再検証を進めています。目標達成後に事業としてどのような形が成立するか、外部環境の変化にどう対応すべきか、不確実な状況に対抗できる戦略を模索しています。同時に、自身のアウトプットをため込まずに、早期に外に出してフィードバックを受け、短いサイクルで改善することで、スピードと質の両方を向上させることを心掛けています。

クリティカルシンキング入門

「自分の思考の限界を突破する方法」

バイアスを超える思考法とは? 自分の思考にはバイアスがかかっていることは理解していたつもりでしたが、ワークを通じて、想像以上に自分の思考を制約していることに気づかされました。そして、クリティカルシンキングやロジカルシンキングに長けている人々が、思考を制約していないか、自分の考えは偏っていないかを常に意識して問いかけているという話は非常に印象的で刺激的でした。これからは、常に自分に問いかけることを意識し、もう一人の自分を育てていきたいと思います。 新規サービス企画での視点は? 現在、新規サービスの企画・提案書の作成を求められています。そのため、企画の段階から「3つの視点」を意識して提案内容を整理しようと思っています。また、ミーティングの際には、自身が発言する際に限らず「目的は何か」を常に意識しながら参加することを心がけます。その上で、アウトプットをして他者からフィードバックをもらう機会を積極的に増やしていきたいと思います。 ロジックツリーの活用方法 企画・提案書の作成にはロジックツリーを活用し、全体を部分の集合に分解しながら思考を整理します。ミーティング以外の場面でも、日ごろから他者と意見交換をする場や自身の考えをアウトプットして意見をもらう機会を意識的に増やしていきます。そして、すぐに考え出すのではなく、一歩踏みとどまって自分の思考が偏っていないか振り返ることを繰り返し習慣化していきます。

「目的」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right