クリティカルシンキング入門

伝わる資料は細部に宿る想い

グラフの意味は何? グラフが持つ一般的な意味について再認識する機会となりました。例えば、縦棒グラフは要素間の比較に、折れ線グラフは変化や経緯を表現する際に効果的です。資料作成においては、グラフの種類だけでなく、配色、配置、フォントなど細部にも意図を込めることができると実感しました。こうした「隅々まで趣向を凝らす」姿勢を持つことで、手間をかける理由―伝えたいという強い思い―が資料に温かみを与え、結果として細かな注意点も自然とクリアできると考えています。 人事資料は分かりやすい? 人事部では、全社向けに発信される資料が多数あるため、誰が読んでも理解しやすく、視覚的に読み込みやすい資料作成の重要性を感じています。特に、人事考課や昇格試験の案内では、体裁の整え方に重きを置き、ナンバリングなどを活用してより簡潔に情報を伝えられるよう工夫していきたいと思います。また、人事から発信する読み物においては、アイキャッチの工夫により従業員のメリットや関心に沿ったデザインを心掛け、興味を引く資料作成を目指します。 数値資料で納得? データを用いた資料作成においては、相手に情報の探索をさせないため、定量的なグラフを活用し、配色やフォントにも意図をもって整えることが重要です。さらに、メッセージとデータの整合性を常に意識しながら、分かりやすく簡潔な資料作りを進めていきます。

データ・アナリティクス入門

平均だけじゃ語れないデータの秘密

データ分析の秘訣は? 今週は、数字に集約してデータを比較・分析する手法を学びました。単純な平均値だけでなく、データの中心を示す代表値や、どのようにばらついているかを示す散らばりの視点からも計算・分析することで、データの偏りや傾向を正確に捉えることができると理解しました。一方で、単純平均だけに頼ると誤った分析結果に至る可能性があるという点も印象的でした。特に、実践演習での受講者の平均年齢の設問において、単純平均では実際のデータの分布と乖離があることが実感できました。 最適計算方法は? また、代表値や散らばりには複数の計算方法が存在することも学びました。状況に応じて最適な計算方法を選択し、仮説の検証に役立てていきたいと考えています。 人流データはどう見る? 例えば、人流データの年度別や地域別での比較において、従来は増加率を用いることが多かったため、得られる情報が限られていると感じていました。今回学んだアプローチを踏まえ、具体的な仮説のもと、どの計算方法が最も有効かを検証していくつもりです。 グラフの意図を探す? 自分の業務では、可視化されたグラフから示唆を得る場面が多いですが、まずはそのグラフがどのようなデータ項目から構成されているのかを数値で確認し、どのような意図で作成されたのかを図表とともに理解することを意識して取り組んでいきたいと思います。

クリティカルシンキング入門

視野を広げるための問いかけの力

分析時に問いかけの重要性とは? 分析の目的を「問いかけ」から始めることの重要性を学びました。具体的なテーマを最初に決めてしまうと視野を狭めてしまう可能性があります。そのため、「何のために?」と問いかけることからスタートし、具体化することが大切です。また、チームで物事を進める際には、ゴール(目的)を明確にしておくことで、本質から脱線することを防ぐ効果があると理解しました。この認識を忘れないように、何度も共有することを徹底したいと思います。 新規企画にどう役立てる? 新しいサイトやサービスの企画や改善の際にも、この方法が役立つと感じました。たとえば、上司から「このシステムを導入するために資料を作って会議をセットしておいて」と指示を受けることがあります。その際、イシューを明確にしておくことが効果的だと思いました。 効率的なミーティングの準備法は? これまで私は、新しいサイトやサービスを企画する際、「●●について」とテーマを限定してキックオフの資料を準備していました。今後は、事前に情報を分解し、目的を問いかけることでテーマを具体化した状態で会議に望もうと思いました。責任者からスピーディーな改善を求められることが多い中、これにより時間の節約にも期待が持てます。また、データ分析を用いて現状の数値をしっかり把握することで、改善後の効果測定も行いやすくなると感じました。

データ・アナリティクス入門

数字が紡ぐ学びの軌跡

データ加工はどう整理する? データ加工においては、数値に集約して捉える、目で見て把握する、そして数式に集約するという3つの方法を基本としています。 分析はどう進む? 分析の際は、まず目的(問い)を設定し、仮説を立てたうえでデータ収集・検証を繰り返すプロセスが基本です。さらに、インパクト、ギャップ、トレンド、ばらつき、パターンの視点と、グラフ、数字、数式というアプローチを組み合わせることで、多角的に情報を捉えています。 数値管理はどう考える? 具体的な数値の扱いとしては、代表値に単純平均、加重平均、幾何平均、中央値を用い、散らばりは標準偏差で表現します。ただし、平均値は外れ値の影響を受けやすいことに注意が必要です。 セグメントはどう見る? また、キャンペーンメールのデータと顧客データを用いた分析では、どのセグメントにどのような傾向があるかを明確にし、それをもとに有意差が見込める仮説を立てる際に、プロセス・視点・アプローチの組み合わせが効果的であると感じました。 検証の深め方は? 以前は、キャンペーンメールと顧客データを分析する際、インパクト、ギャップ、トレンド、ばらつき、パターンといった視点に十分意識を向けていなかったため、今後はこれらの視点をしっかりと取り入れながら仮説を立て、より精度の高い検証を行っていきたいと考えています。

クリティカルシンキング入門

数字の裏に隠れる小さな真実

数値分解の意義は? 数値を細かく分解・加工することで、見落としがちな示唆を得る可能性があります。また、数値はグラフ化することで、より分かりやすく伝えることができます。分析の際は、「誰が」「いつ」「どのように」という多角的な切り口を用意しておくと効果的です。 分解作業の狙いは? 今回のワークは、与えられた数値をどのように分解するかに焦点を当てました。アンケートの設計・配信・分析といったタスクにおいては、どの切り口でどのような分析を進めるか全体像を押さえつつ、選択肢を適切に分解しておかなければ、いくらデータを集めても活用できないリスクがあります。 仮説検証はどう? また、新しい発見がなくても、今回の分解作業で得られなかった知見を学びとして前向きに捉えることが大切です。単にアンケートを配信するのではなく、小さな仮説検証を重ねることで、より精度の高い内容にブラッシュアップしていくことが求められます。 生成AIの使い方は? まず、全体像を明確に定義した上で、生成AIを活用しながらアイデアを整理します。その後、専門知識を有する関係者と確認を行い、情報が重複せず整理されているかをレビューしていきます。 基本属性の整備は? さらに、顧客の基本属性については、共通の型として整備し、自分だけでなく部署全体で再利用できるように準備を進めています。

アカウンティング入門

数値で読み解く経営のリアル

価値と戦略は一致? 事業活動においては、まずターゲット顧客を設定し、次にどのような価値をどこまで提供するかを決めることが基本です。この段階で、必要な経営資源や資金の規模が大きく変わるため、環境の変化に応じて顧客に提供する価値を見直す必要があります。今回の学習では、経営判断をサポートするツールの一つとして、財務三表について取り上げました。 三表で現状把握? 財務三表は、経営資源や資金の現状を数値化し、企業や事業の状況を定量的に把握するための重要な資料です。自社の経営状態の正確な把握に加え、他社との比較を通じて強みと弱みを明らかにすることができ、ターゲット設定や中期計画の策定にも役立つと感じました。 意見交換の価値? また、講座では動画での座学だけでなく、さまざまな業種の受講生との意見交換を通して、多角的な視点から分析を行う機会がありました。学んだ知識を活用して分析や課題抽出に取り組むことで、実践的な理解が深まるとともに、今後の経営判断に応用できる点が印象的でした。 部門横断で見る? さらに、経理や財務部門以外の人が会社の財務三表を見る機会の重要性も再認識しました。情報が十分に揃わなければ、それ自体が会社の課題となりうるという考察は、非常に示唆に富んでおり、今後の企業運営における課題意識を高めるポイントとなりました。

データ・アナリティクス入門

数値と論理で見える理想の未来

どの方法で解決? 問題解決には大きく2つのアプローチがあると感じています。1つは、あるべき姿と現状のギャップを埋め、正しい状況に戻すための方法です。もう1つは、未来に向けたありたい姿と現状のギャップを解消し、望む状態に到達するための方法です。どちらの場合も、目指す状態と現状を定量的に示すことが非常に重要です。 分析手法は何? そのため、ロジックツリーやMECEといった分析手法が有効だと考えています。これらのツールを使うことで、問題やデータを細かく分解し、整理された形で把握することが可能になります。 顧客データ整理はどう進む? 具体的には、現在保有している顧客データに含まれる情報を、国や契約の条件などの観点から整理する必要があります。これまで「顧客データ」とひとまとめにされていた部分を、ロジックツリーを用いて項目ごとに分解し、各顧客についてどのような情報が含まれているのかを明確にすることが求められます。また、業務における理想の状態と現状のギャップについても、数値などの定量的な指標を用いて示すことが大切だと感じました。 手法活用の可能性は? このように、定量的な情報の整理と、体系的な分析手法の活用が、問題解決を実現する上で不可欠であると再認識しました。今後も、これらの手法を業務の改善に積極的に取り入れていきたいと思います。

データ・アナリティクス入門

ありたい自分に出会う学び

どんな人物を目指す? まず、自分が何を学ぶかという内容よりも、どのような人物になりたいか、その「ありたい姿」を明確に描くことの大切さを改めて実感しました。講座を進める中で、演習に没頭していた自分がいましたが、その過程で「ありたい姿」に向けては、学習習慣を確立しながら、同時にコンセプチュアル・スキルを身につける必要性を感じるようになりました。 どんな体験を届ける? また、ただ単に数値を改善するのではなく、ユーザーにどのような体験を届けたいのかという「ありたい姿」から物事をスタートすることで、ぶれのない方向性が保てると感じました。具体的には、何をいつまでに行うかという計画だけでなく、チーム全体で「私たちはどのような存在になりたいか」を共有し、そのビジョンに基づいて戦略を立てることで、メンバーの主体性が高まり、プロジェクトがスムーズに進行することを学びました。 なぜ数字が気になる? さらに、データに注目する際は「なぜこの数字になったのか」という仮説を立て、チーム内で共有することの重要性を知りました。月初には、プロジェクトを通じた「ありたい姿」を簡潔に1~2行でまとめ、企画立案や施策レビューの際には、3Cや4Pなどのフレームワークを活用して情報を構造化することで、現状のチェックと翌月に意識すべきスキルの選定が可能になると感じています.

戦略思考入門

優先順位に革命!社内広報の秘訣

どう優先順位を決める? 優先順位の付け方について、日頃から意識はしているものの、実行には至っていないと実感しました。その原因は、感覚的な対応に頼っていたことだと思います。具体的な数値を用いて、定量的に判断できる場合には数値で明確化し、そうでない場合でも様々な観点からどこに注力すべきかを書き出して判断しようと考えました。 社内広報の効果は? 特に社内広報の実施において、この考え方が役立つと感じています。全ての要望を受け入れるのではなく、自部門の目標に沿っているかを大前提として考え、その情報を求める社員がどのくらいいるのか、公開することでどのような価値が生まれるのかを明確にしながら実施を検討したいと思っています。一方で、メンバーに自発的に取り組ませる仕事を提供することも重要です。受け取る社員の価値と自部門のメンバーの成長を考慮して、実施の判断を行いたいと考えています。 実施基準はどう決める? 社外だけではなく社内広報に関しても、実施判断のための基準を設けたいと思っています。現在は実施を前提とした記事テンプレートを用意していますが、実際に実施するかどうかの判断は明確にされておらず、都度非論理的に判断してしまっています。実施基準を明確にすることで、メンバーも「なぜこの仕事を捨てるのか」を感情論ではなく理解できるようになると思います。

データ・アナリティクス入門

数値とグラフで切り拓く現場力

平均値の違いは? 代表値の種類について学んだ内容はとても印象的でした。単純平均、加重平均、幾何平均、中央値という4つの代表値の違いを理解することで、従来は感覚や指示に頼っていた数値の選択を、論理的かつ具体的に検証できるようになると感じました。今後は、各平均値の特徴を自分の言葉で説明できるよう意識しながら実務に活かしていきたいです。また、Excelの関数を活用して算出することで、より実践的な理解が深まると考えています。 標準偏差の意味は? 標準偏差に関しても、データのばらつきや密集度を数値で把握する有効な指標であることを学びました。従来、平均値だけに注目していた自分にとって、標準偏差を組み合わせて分析する視点は新鮮でした。これからは、データの分析や仮説の立案において、平均と標準偏差の両面からアプローチすることで、より説得力ある結論を導き出せるよう努めていきたいと思います。 グラフはどれを選ぶ? また、ヒストグラムについても初めて触れる機会があり、その有用性を実感しました。今まであまり業務で使用する機会がなかったグラフですが、各グラフの長所と短所を理解することで、情報の伝達方法の幅が広がると感じました。今後は、提案書などでどのグラフが何を効果的に表現できるのか、理由をもって選択できるよう、実践的に活用していきたいと思います。

データ・アナリティクス入門

比較で見える新たな視点

比較方法はどう決める? 分析の基本は比較にあります。分析対象をただ単に見るのではなく、相違点や類似点を明確にするため、対比できる条件を設定しながら進めることが重要です。 数値の意味はどう捉える? 定量分析を行う際は、単に数値の平均値や個数を求めるだけではなく、その背後にある意味を捉えることが求められます。例えば、男女のデータ分析においては、単位に数値を割り当てた場合の平均値そのものに意味はなく、それぞれのグループの人数や全体に占める割合を把握することで、ターゲットや戦略を導く上で有効な情報が得られます。 グラフの選び方はどうする? また、データの視覚化は、分析結果を他者と共有する際に非常に有効です。グラフを用いることで、複雑な情報も整理され一目でわかるようになりますが、データの特性に応じた適切なグラフ形式を選ぶことが大切です。 仮説設定をどう見る? さらに、分析においては、目的や仮説を明確にしてから着手する姿勢が重要です。分析する際は、比較対象となる条件を十分に整え、個々のデータに対してどの指標(個数、平均値、標準偏差など)を用いるかを慎重に検討することが必要です。自分が伝えたいメッセージと、相手がどの程度の情報を理解できるかを意識しながら、適切なグラフや表現方法を選ぶことも忘れてはなりません。

データ・アナリティクス入門

仮説とデータが紡ぐ物語

分析の始まりはどう? データ分析は、まず解決すべき問題を明確にし、最終的な結論のイメージを持つところから始まります。すなわち、最初に仮説を立て、what、where、why、howという流れに沿って必要な情報を整理することで、分析の方向性を定めることが大切です。 データはどのように収集? 次に、必要なデータを収集します。その際、実際の数値と割合の両面から確認を行い、一方に偏らないバランスの取れたデータ把握を目指します。必要な情報が不足している場合は、自らデータを集める方法も検討すべきです。評価方法においては、あいまいな表現や中間的な回答を避けることが重要です。 図表でどう伝える? 収集したデータは、次に加工して見やすい図表などにまとめます。どのような表現方法がデータの散らばりや相関を直感的に理解させるかを判断し、情報を具体的かつ明確に提示することが求められます。 仮説はどう再検証? そして、整理されたデータをもとに、当初の仮説に沿って分析を進め、発見に結びつけます。この過程では、what、where、why、howの各側面で原因と結果を再確認し、客観的な視点で全体のストーリーを見直すことが大切です。また、既存の仮説にとらわれず、新たな価値ある仮説の構築に努めることも求められます。

「数値 × 情報」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right