リーダーシップ・キャリアビジョン入門

対話で見つける成長のヒント

評価フィードバックはどう? 面談の場で評価をフィードバックする際、単に課題点や悪い評価だけに焦点を当てるのではなく、受け手が実際に行った努力や良い点も十分に評価することの重要性を学びました。評価される側は、努力や成果があるはずですので、良い点を取り上げながら課題も指摘することで、全体としての納得感が生まれやすくなります。 部下との対話は必要? この考え方は、実際に部下とのフィードバック面談でも大いに役立つと感じています。一方的に課題点を指摘するのではなく、まず部下の意見を引き出し、その対話の中で自分自身が課題に気づくきっかけを作ります。また、悪い点だけでなく良い点もしっかりと伝えることで、ただの指摘ではなく、共に改善策を考えていくプロセスが自然と促されるようになり、双方にとって有意義な面談となると確信しています。

クリティカルシンキング入門

客観視で育む最適判断力

直感と客観視とは? 改めて、物事を客観的に捉える重要性を実感しました。自分の感覚に頼るだけでは思考の癖に陥りやすく、解くべき課題の本質を見誤るリスクがあると感じました。そのため、直感や経験だけではなく、冷静な客観視を意識することが重要です。 限られた情報でどう考える? また、正解が用意されていない問いに対して、限られた情報から最適解を導き出す思考力と、それに基づく意思決定力は、AIが普及した現代において非常に求められるスキルだと考えています。 意思決定の秘訣は何か? 普段の業務では、自らイシューを設定し、限られた情報の中で果断に意思決定を行う経験を積んでいきたいと思います。その際、どのような理由で判断を下したのかを、他者に明確に伝えられるよう、主張と根拠をセットで整理しておくことの必要性を改めて認識しました。

データ・アナリティクス入門

小さな気づきが大きな成長を生む

どう原因を見極める? 課題解決においては、まず対象の業務プロセスを細分化し、どの段階が問題の原因となっているかを明確にすることが重要です。自分の感覚だけで原因を決定するのではなく、有識者へのヒアリングなどを通じてプロセス全体を整理し、どの部分に注力するかを正しく見極める必要があります。どのプロセスを改善すれば、課題解決に大きな効果が期待できるかをしっかり検討することが求められます。 何をテストするの? また、改善案の効果を正確に判断するためには、A/Bテストの導入が有効です。改善前後の両方のパターンを同じ条件下でランダムにテストすることで、施策の効果を客観的に評価できます。さらに、システム導入のトライアルにおいては、現行システムと新システムを同時に使用することで、正確な効果測定が可能となるよう進めることが望まれます。

データ・アナリティクス入門

データで解く3Cの秘密

3C/4Pの意義は? 別講座で学んだ3C/4Pといった基本的なフレームワークが、さまざまな場面で十分に活用できることを実感しました。まず、データをざっくりと切り出してから眺めることで、課題をもとに仮説立案がしやすくなる点が非常に有効であると学びました。また、3Cに関しては、多少の変形を加えて3つの象限を定義することが重要だと感じています。 仮説はどう構築する? 対応ケースの増減について仮説を立てる場合には、3Cを変形し、関連する要素に置き換えてデータを俯瞰的に分析する手法が考えられます。その視点としては、C:Customer、C:Contact(ケースをあげる人)、C:Customer Engineer(ケース対応する人)といった切り口でデータを整理することにより、具体的な洞察が得られるのではないかと考えています.

戦略思考入門

固定費と習熟度が創る現場革命

経済性と習熟効果はどう? 規模の経済性について学びました。固定費と変動費の違いを正確に分析することの重要性を再認識し、分析を誤ると規模の不経済に陥る可能性がある点が印象に残りました。また、習熟効果についても一定程度理解していたものの、製造現場では人が入れ替わるのは仕方のない事実であるため、個々の熟練度に過度に依存しない設計やマネジメントが求められると感じました。 自動化の影響はどう考える? 製造現場では、自動化やAIの導入により、人が関わる部分が次第に置き換えられています。こうした変化を進めつつも、システムの導入によって新たな不具合が生じる可能性や、重要な業務においては依然として人の習熟度が影響を与える点に注目しています。そのため、こういった課題についても分析し、適宜改善策を講じていく必要があると考えています。

データ・アナリティクス入門

目的と課題を見極める!ビジネス成功の鍵

分析の目的を再確認するには? 分析は、目的があって初めて意味を持つことを再認識しました。ビジネスパーソンの価値は、会社の目的や日々の業務の課題を、いかに効率的かつ低コストで解決できるかにかかっていると考えます。 課題共有の方法は? まだ具体的な業務への分析の活用イメージはありませんが、まずは目的や課題をしっかりと定めることが重要です。特に、その課題が他者からの依頼である場合、最終的に得たいゴールを詳細に明確にし、目的や課題を共有するために議論を重ねることが必要です。 新規ビジネスの土台を整えるには? 新規ビジネスを検討する際には、まず会社や部署の目的やゴール、現時点での課題を正確に把握することを重視したいです。その土台が整った上で、各種フレームワークやツールを活用した分析に進むことができると考えています。

クリティカルシンキング入門

効率的な課題特定で未来を創る

どう考えて選ぶ? 相手にメッセージを伝えるためには、何をどのようにすべきかを明確にすることが重要であると学びました。また、課題を的確に特定することが、すべての基本になると思います。今後は、明確に課題を特定し、自分が直面している問題をしっかり考える習慣をつけたいと思います。 なぜすり合わせる? 毎日多くの業務をこなす中で、深く考える時間が取れていないのが現状です。このままでは、さらに仕事が増えてしまうと感じています。そこで、ミーティングでは課題解決や共有すべき内容をしっかりすり合わせたいと思います。 どの議題を用意? 毎週行われるミーティングでは、事前にどのようにディスカッションを進めるか、何を課題として捉えるかを準備しておこうと考えています。適切な議題設定とその活用を通じて、実践していきたいと思います。

マーケティング入門

効率だけじゃない、心の体験

感情価値を追求する理由は? 昨今の市場環境では、単に機能的価値を提供するだけでは顧客を満足させることが難しくなっています。顧客満足を実現し、真の差別化を図るためには、「体験」という情緒的価値の追求が欠かせません。 業務効率と情緒的価値は? 私の業務は、効率化や業務圧縮を目的としたツールやシステムの提供が中心ですが、その先のクライアントに対して情緒的価値を届ける意識を持つことが重要です。 多様なニーズに応えるには? また、社内の複数のステークホルダーを顧客として捉え、日々の業務依頼を通してそれぞれのニーズや課題に応えることを心がけています。 体験で業務改革は? BPOやBPR業務においては、顧客に「楽になった」という体験を提供することが本来の目的であることを忘れず、今後も業務に取り組んでいきます。

戦略思考入門

顧客を魅了する差別化の秘訣

どうして差別化が必要? 差別化とは、単に他社と違うだけでなく、顧客に選ばれるために、顧客、競合、自社を徹底的に理解することだと感じました。特に、ターゲットとなる顧客が誰であるか、またその顧客にどのような価値を提供できるかを正確に捉えることが重要です。加えて、実現可能性、持続可能性、模倣困難性なども念頭に置いた施策を検討する必要があると理解しました。 顧客視点はどう活かす? また、昨年度末に自社の事業方向性を検討する機会がありましたが、その際には自社自身に焦点を当てすぎた結果、顧客視点が希薄になっていたと反省しています。今後はまず「顧客にとっての価値は何か」を追求し、その上で、自社の強みや弱み、保有する経営資源を整理し、課題を明確にすることで、実現可能かつ持続可能な差別化を実現していきたいと考えています。

データ・アナリティクス入門

平均だけじゃ見えないデータの真実

平均以外の指標は? 単純平均は外れ値の影響を受けやすいため、中央値やデータのばらつきを確認する重要性を理解しました。また、ヒストグラムや標準偏差についてはこれまで十分に活用できず苦手意識があったものの、演習を通じて具体的な活用イメージを持つことができました。加えて、加重平均や幾何平均が、データの重要度や変化率、成長率の評価に有効である点も理解できました。 分析方法はどう変わる? 課題分析においては、単に平均値から仮説を立てるだけでなく、データのばらつきも併せて確認するプロセスを取り入れるようにしています。さらに、セミナーの集客状況や参加者の満足度を評価する際、平均値に加えて中央値をしっかりとチェックするよう努めています。今後は、加重平均や幾何平均が活用できるシーンについても積極的に検討していく予定です。

クリティカルシンキング入門

問いが導く課題解決のヒント

問いの本質とは? イシューを考える際は、まず「問いは何か」を明確にすることが重要です。その上で、課題分析に取り組むと、思考が横道に逸れることを防げます。また、問いをチーム全体で共有することで、組織としての方向性が一層明確になると感じました。 課題解決はどう考える? 例えば、社員のエンゲージメント調査で評価制度の納得度が低いという結果が出た際、課題の真因を探り、解決策を考える必要がありました。その際、評価制度を細かく分解して課題分析を始めたため、本来解決すべき問いが何であったか見失い、方向性を逸れてしまった経験があります。まず「社員の評価納得度を改善するためにはどうすべきか」という問いを立て、納得度を要素ごとに分解し現状を把握しながら課題設定を行えば、よりスムーズな検討が可能だったのではないかと考えます。

データ・アナリティクス入門

仮説検証で広がる実務の可能性

仮説思考の基盤は? 仮説思考の重要性を実感しました。まずは、問題解決のために仮説を立て、その仮説が正しいかどうかを検証するためのデータを収集するという基本プロセスが、結論を導くための確かな基盤になると感じました。 複数仮説の選び方は? また、複数の仮説を最初に立て、その中から有力なものを選別していく方法は、柔軟かつ多面的なアプローチを可能にします。さらに、仮説を立てる際には、3Cや4Pなどのフレームワークを活用することによって、問題をあらゆる角度から捉え、具体的なデータ収集の方法(既存のデータの活用や新たなデータの収集)の選択にもつながることを学びました。 実務活用のポイントは? この学びを活かすことで、実務においても課題の原因究明や効果的な打ち手の検討に役立てることができると感じました。

「重要 × 課題」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right