データ・アナリティクス入門

比較が拓く新たな自己発見

比較ってどう進める? データ分析の根本は比較にあります。分析を行う際には、目的に応じた条件を揃えた比較対象を設定することが大切です。目的が明確であれば、適切な比較対象の選定が可能となり、分析の精度も向上します。 直感の表現は? また、直感的な感覚を自分の言葉で言語化することも重要です。「なんとなく」という漠然とした感覚を具体的に説明できるようにすることで、分析結果に説得力が生まれます。 定性定量はどう? 定量・定性の両面のデータを活用し、定量データの尺度の違いや特徴を把握することも必要です。さらに、分析の目的に合わせた可視化―例えばパーセンテージ表示やグラフ化―を行うことで、結果をより理解しやすく提示することが可能となります。 分析手順は何? データの加工や分析のプロセスでは、まず目的の確認と仮説の立案を行い、その後に結論へと導く一連の手順が求められます。この流れをしっかりと実行することで、効果的な分析と説得力のある結論が導かれます。 活用場面で何をすべき? 具体的な活用場面としては、営業やチームから依頼された市場データの提供、他社への施策提案、自社商品の価格検討などが挙げられます。これらの場面では、まず目的や期日などのゴールを明確に確認し、必要な条件を的確にヒアリングすることから始め、比較対象の設定、データの収集・加工・分析を実施します。最後に、分析の目的に沿った可視化手法を用いて、結論を提供することが求められます。

データ・アナリティクス入門

未来の問題解決力を養うナノ単科の魅力

問題解決の4ステップとは? 問題解決の4ステップについて確認しました。これらのステップは、問題の明確化、問題箇所の特定、原因の分析、そして解決策の立案です。問題が発生した際には、このフレームワークに従って課題の本質と原因を十分に把握し、それを踏まえた解決策を検討することが重要です。ビジネスではスピード感が求められることが多いですが、原因分析を急いでしまうと誤った解決策に至る可能性があるため、注意が必要です。 仮説設定のポイントは? また、仮説を考える際のポイントには、複数の仮説を立てることや、仮説同士の網羅性を持たせることがあります。決めうちせずに、異なる切り口で仮説を立てることが大切です。仮説は他の可能性を排除した先にあるため、データによる裏付けも重要です。特に社会課題を扱う際には、原因の仮説が「分かりやすい」ものに走りがちですが、常に複数の可能性を視野に入れてデータを検討することが必要です。 フレームワークをどう活用するか? 提案やブレストの際には、今回のフレームワークを取り入れたいと考えています。また、チーム内で問題解決の4ステップを共有し、データの取得方法を数字だけでなく、アンケートや口頭での情報収集など選択肢を広げて検討することも重要です。 仮説設定が重要な理由は? 特にデータ分析では「仮説設定」が最も重要であり、クリエイティブが求められる分野だと感じています。今後、この点を重点的に取り組みたいと思います。

クリティカルシンキング入門

データ分析の新視点で営業資料をブラッシュアップ

異なる視点でデータを分析するには? データを分解して考える際、When, Who, Whatの切り口を意識し、複数の視点で分析することがデータ分析に繋がることを学びました。様々な切り口から傾向を掴み、本当にその見方で合っているかという疑問を持ちながら丁寧に読み解くことが大切です。今後は、業務でデータ分析を行う際に発見した1つの傾向に満足せず、疑問を持ち、様々な切り口を意識して業務を見直していきます。 効率的な分析手法をどう見つける? また、データの切り口は最初から細かくせず、大→小の順で考えると分析しやすいことも分かりました。 どのように営業会議資料を改善する? 最近の営業会議資料の作成業務では、ありきたりな角度でしか集計・分析できていなかったことに気づいたので、今後は様々な角度から分析を行い、グラフを作成するつもりです。SNSのフォロワー数分析でも、大きな範囲でしか数字を分けていなかったため、細かく区切って分析し直そうと思います。 効果的なグラフ作成のポイントは? 会議資料の作成においては、データ抽出の対象範囲を見直し、どのような角度で分析が必要かを持論として上司に相談しながら進めます。グラフは見せたい内容によって変わるので、相手にとって分かりやすい分析の内容を心掛けます。 SNS分析を向上させる方法とは? SNSの分析に関しても、1つの大きな傾向に縛られず、切り口を変えて再度分析し直すことを念頭に置いています。

クリティカルシンキング入門

実践で磨く分解の極意

全体像はどう把握? 本講座では、全体をしっかり定義した上で作業を進める重要性を実感しました。まず全体像を捉えることで、分解の作業がスムーズになり、全体に漏れがなく整然とした分析が可能だと感じました。 MECEは何を意味? また、分け方においてはMECE(抜けや重複がない)を常に意識することが大切だと学びました。例えば、単に「若者」や「リピーター」といった大雑把なカテゴリーで分類してしまうと、定義が曖昧になり、漏れやダブりが発生する可能性があるため、年齢や来店頻度など定量的な指標を用いることが有効です。 複数切り口は有効? さらに、仮説を持ちながら複数の切り口でデータを分類する手法には大きな意義を感じました。年代を10代ごとに分ける方法や、学歴など別の視点で区切る方法など、異なるアプローチを試すことで、より実態に即した傾向を掴むことができると感じました。 視覚チェックで見える? 加えて、図を描くなど視覚的な手段を用いてチェックすることで、直感だけでは気付けなかった課題を明確にできる点にも非常に参考になりました。最終的には、分けた後に「本当にそうか?」と問い直すプロセスが、より深い理解と洗練された分析に結びつくと実感しています。 実践から何を得る? 最後に、考える前にまず実際に分けてみることの大切さを学びました。実践を通じて自分自身の仮説を検証し、新たな視点を得るプロセスは、今後の分析活動に大いに役立つと感じています。

デザイン思考入門

あなたも気づく新授業の扉

講義終了の感想は? 前期の講義終了後、学生アンケートの結果が教員にフィードバックされ、講義改善に生かされる仕組みがあることを改めて実感しました。ゼミの学生からも率直な意見が求められる中、今回の講義を通じて暗黙知の視点の大切さに気づき、複数の教員に授業見学をお願いするに至りました。 主体的授業の課題は? これまでは、学生が主体的に考える授業を目指し、講義形式をできるだけ避けるよう努めてきました。しかし、学生の受講態度や教員の講義手法を観察する中で、自分に不足している視点が多いこと、そして現場には根本的な課題やニーズが多く存在することを痛感しました。 現場で何を学ぶ? 課題の明確化のため、まずは現場に出向き、実際の行動や習慣を観察することが重要だと感じました。観察では、意識されにくいユーザーのニーズや行動の癖を捉え、インタビューではユーザーが自覚している経験や知識を言語化するという違いがあります。 定性分析の効果は? また、定性分析を進める中で、KJ法や付箋を利用した方法を取り入れ、情報の整理やグループ化を行うことの有用性を学びました。具体的には、問題の本質を捉えること、得られた洞察を整理・可視化すること、そしてユーザーの状況や課題に対する解決策の提案を通じた顧客課題説の作成がポイントとなります。 今後の改善策は? 最後に、今後も常にユーザー中心の視点を維持し、検証と改善を重ねる姿勢が必要であることを強く感じました。

データ・アナリティクス入門

正しい問いが導く解決の鍵

何が問題と捉える? 問題解決のプロセスには、まず「何が問題か(WHAT)」を明確にすることが基本であり、その後に課題の位置(WHERE)や発生原因(WHY)、そして具体的な対策(HOW)を検討する流れがあると学びました。 本質はどう捉える? 普段、私は問題が起こるとすぐに「どのように対応するか(HOW)」を考えてしまいがちです。しかし、本質的な解決策を導くためには、まず問題自体を正確に捉えることが重要だと実感しました。その際、基本となる「比較」を行うことで、どの部分に大きなギャップがあるかを見極めやすくなります。 経営結果の謎は? また、年次の経営結果を分析する際も、まず何が問題なのかを探ることが肝心です。例えば、利益が上がらない原因が売上の減少にあるのか、費用の増加によるものなのかを明確にし、どのカテゴリー、どの購買層、またはどの部門に起因しているのかを整理することが求められます。そして、その整理された課題に対してどのような対策を講じるかを段階的に考えていくことが大切です。 問いの作り方は? 最も難しいと感じたのは、問題そのものを見つけ出すための適切な問いを立てることです。正確な問いがあれば、フレームワークに沿って段階的に解決策を導き出すイメージが湧きます。しかし、感度の高い問いが立てられなければ、効果的なロジックツリーを作成することも困難になります。今後は、この問いを立てるコツをより一層習得していきたいと感じました。

データ・アナリティクス入門

実務に直結!データ活用の学び

実務講義はどう感じる? 今週までの講義やグループワークを終え、本格的なデータ加工、代表値とビジュアル化、データ傾向の把握といった実務に直結する講義が始まりました。私自身、エクセルの基本理解が十分でなかったため、代表値や散らばりを用いてデータ傾向を確認する方法や、グループワークで触れたピボットテーブルやクエリを活用した作業効率化に関する気づきは、今後につながる貴重な学びとなりました。これまでの業務の進め方を見直す上でも、大変有意義な受講でした。 業務効率向上の秘訣は? 所属企業ではグループ店舗のデータ集計・分析や戦略提案を担当していますが、基本知識の不足から作業効率が悪く、長時間を要することが多く苦労していました。しかし、今回の学びを通じて、データの意味を正しくとらえる方法や、効率的な集計作業の進め方が理解できたため、すぐに実務に活かしながら、少しずつスキルを向上させていこうと考えています。 基本技術はどう磨く? さらに、グループワークを経て代表値や散らばりの重要性に加え、エクセルのピボットテーブル操作など、データ集計の基本技術の習得が急務であると実感しました。そのため、早速オンライン動画でエクセル操作(ピボットテーブル活用)のレクチャーを受け、本日以降はこれまで触れていなかった基本知識をさらに深めるとともに、データの傾向把握のために代表値や散らばりに注目した確認を行い、誤ったデータ解釈につながらないよう注意していこうと思います。

データ・アナリティクス入門

仮説で見つける新たな視界

どうして複数仮説が必要? 結論を先に決めてしまわず、はじめから複数の仮説を立てることが大切です。それぞれの仮説に網羅性を持たせ、偏りのない検証を心がける必要があります。 どのフレームが使える? 仮説を立てる際には、3Cや4Pなどのマーケティングフレームワークを活用することが有効です。他のビジネスフレームワークも使いやすさを考慮して試すと良いでしょう。さらに、仮説を検証するためのデータが恣意的になっていないか注意することが重要です。 実績の要因は何? 実績に対して要因を探る際、ベテランの経験則に基づく仮説が採用されやすい傾向があります。しかし、対案を立案しデータによる検証を実施することで、本当にその仮説が正しいのか確認する必要があります。また、仮説を証明するためだけのデータに依拠しすぎないよう注意してください。 急な依頼はどう考える? たとえば、上司から急遽、ある実績に対して1つの仮説だけを検証するよう依頼されたケースがありました。その際、他の分析結果ではその仮説の寄与度が低いことが示されており、また分析結果が活かせるのは1年後という説明から、急いで1つの仮説だけを検証する必要はないと理解してもらいました。 理想と現実は? このように、上司がある実績について理想的な状況を望んでいる場合でも、実際には複数の説明変数が影響していると考えられます。したがって、必要なデータを揃えて十分な分析・検証を行うことが求められます。

クリティカルシンキング入門

数字分析で見えた新たな視点の発見

数字の見方を再考しましたか? 数字を見たとき、なんとなく自分なりの答えを出して、その答えに合うような分析をしているのではないかと思うことがあります。しかし、実際にグラフ化したり、さまざまな切り口から数字を分解すると、全く違った見え方をすることがあります。この体験から、自分にはそのような癖がついていると反省しました。 固定観念をどう破る? 業績やマーケティングの結果を分析する際に、この経験を活かせると感じました。売上が下がっているときに、「人手不足だから」や「閑散期だから」といった固定観念に基づいて数値を分析していることに気づきました。後から振り返ると、本当の原因は他にあったのではないかと思うことがあります。そこで、切り分け方や見せ方を工夫し、より根拠のある分析を行い、業績向上と改善行動につなげていきたいと考えました。 分析スキルの向上方法 数字を切り分けるためのスキルを身につけたいと思います。与えられた数字だけでなく、分析におけるフレームワークを学び、実務で活用できるようになりたいです。 価格設定で何を意識する? 今後、自社で運営している宿泊施設の価格設定業務において競合分析・自社分析を活用していきたいと考えています。さまざまな要因を分析し、一室あたりの価格を設定していますが、これまでは根拠が曖昧でした。今後は、より細かく根拠を持った価格調整を行い、顧客満足度を下げることなく、単価を上げていけるようにしたいと思います。

データ・アナリティクス入門

仮説で切り拓く学びの軌跡

仮説の基本的な意味は? 仮説とは、ある論点に対する一時的な答えを意味します。仮説を立てることで、説得力が向上したり、日々の課題に対する意識が高まったり、業務のスピードアップにもつながります。仮説には、結論に向けたものと、問題解決のための「どこで」「なぜ」「どうやって」といったステップに基づくものがあります。また、時間の経過により仮説の内容が変化することも考えられます。 仮説検証はどう進む? 仮説を構築する際には、まず複数の仮説を立て、各仮説が網羅的であるかを確認することが重要です。思いつきや直感、単一の数字だけで決めつけず、様々な切り口やフレームワーク(たとえば4Pなど)を用いて検証することが求められます。さらに、必要なデータが何か、どこにあるかを探りながら、証明可能なデータやアンケート、インタビューなどを通じて仮説を補強することも一つの手段です。 過去経験はどう活かす? これまでの経験や目の前の数値だけに頼る傾向がありましたが、初めに様々な可能性を洗い出しておくことで、全体のスピードアップや説得力が大幅に向上することを実感しました。また、3Cや4Pといったフレームワークは、実際の業務でどのような視点で分析を進めるべきかを検討する上で有効であると理解できました。調査依頼を受けた際には、目的に応じた適切な指標を考え、複数の仮説を立てることで、分析の軸を明確にし、必要なデータの所在を把握していくことが大切だと感じています。

データ・アナリティクス入門

仮説構築で見つける問題解決の鍵

問題解決の基本は何? 問題解決において、What(何が問題か)、Where(どこに問題があるか)、Why(なぜそうなのか)、How(どのような解決策を取るか)の順で進めることが基本であると学びました。また、仮説の構築において、自身の考えの幅を広げるためのフレームワークとして、3C分析や4P分析が有効であることを知りました。 仮説立案のポイントは? 仮説を立てる際には、複数の仮説を立てることと仮説の網羅性が重要です。さらに、仮説には結論の仮説と問題解決の仮説があり、それぞれの問題に対して適切に使い分けることが大切だと理解しました。 フレームワークの活用法は? 特に自身の仕事において、仮説を立てる際のフレームワークが大変有用だと感じました。これまでは人員不足といった問題に対して自身の思いつきのみに頼り、解決策を立てていましたが、今後は3C分析や4P分析といったフレームワークを活用し、より網羅性のある仮説を立てられるようにしたいです。 人員不足問題にどう対応する? 具体的には、人員不足という問題に対して、どこに問題があり原因は何かを仮説を立てて探りたいと考えています。仮説を立てる際には3C分析を活用し、求職者側の視点、競合の動き、自社の問題(雇用条件、福利厚生など)から仮説を立ててみます。その結果、自社に問題があるとなれば、4P分析に進み、さらに深堀りして問題を特定し、具体的な対策を立てるようにしていきたいです。

マーケティング入門

顧客の声が導く業務革新

マーケティングの本質は? 今回の講座では、マーケティングの基本要素である「何を売るか」「誰に売るか」「どう魅せるか」を体系的に理解できました。単なる商品提供ではなく、顧客の潜在ニーズやペインポイントを掘り起こし、体験価値を創出するプロセスであることを再認識しました。行動観察、デプスインタビュー、STP分析などの手法を学び、差別化戦略やイノベーション普及の要件、さらには内部顧客視点の重要性にも気づくことができました。 バックオフィスの変革は? また、自身のバックオフィス業務において、従来の補助作業から脱却し、営業店や社内を「顧客」として捉え、価値提供に取り組む必要性を実感しました。業務プロセスを「スピード×正確性」や「コスト削減×利便性」といった複数の軸で再設計し、数値や具体例を用いて価値を明確に伝えることが求められます。この取り組みにより、内部顧客の安心感や満足度が向上し、全社的な競争力強化にも寄与することが期待されます。 業務改善の策は? 今後は、まず日々の業務終了後の振り返りや小規模なPDCAサイクルの実施に取り組み、データ分析を通じて業務効率やペインポイントを定量的に把握していきます。さらに、マーケティングの視点を取り入れたセグメンテーションやポジショニングの再検討、具体的な業務プロセスの改善策を検討し実行する予定です。同僚とのディスカッションやフィードバックも積極的に活用し、持続的な改善と成長を目指していきます。

「分析 × 本」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right