戦略思考入門

捨てる決断が未来を創る

網羅を見直すべき? トレードオフの考え方を学び、すべてを無条件に網羅しようとするアプローチの見直しが必要だと実感しました。時間、費用、品質といった要素を考慮し、あえて不要なものを捨てる決断が、自分自身や組織にとって新たな武器になると考えています。そのため、どの取り組みを採用し、どれを見送るかを、定量的な分析によって判断する能力がこれまで以上に求められていると感じました。 激変時代の整理は? 現代は外部環境が複雑化し、変化が激しい時代です。そんな状況下では、トレードオフの視点で業務を整理することは容易ではありません。しかし、変化の激しい中でこそ、不要な部分を意識的に捨てることが、企業や組織、さらには個人の疲弊を防ぐ上で重要だと言えます。特に、開発業務においては、新規や継続、または中止の判断を明確にすることで、効率的な取り組みが可能になると考えています。 開発判断の基準は? 具体的には、開発の推進可否を決定する際に、固定費を含む開発費に対して、どの程度の収益に結びつくのか、その効果がどれくらいの期間持続するのか、また競争力をどれだけ維持できるのかといった観点から、各項目の価値を明確に見極めたいと思います。さらに、技術ノウハウの蓄積や新技術の探求といった、費用対効果だけでは整理しにくい要素についても、その実現が社会にどのような貢献をもたらすのか、顧客に何を提供できるのか、そして競争上の優位性がどのように確保できるのかを具体的に言語化することで、より明確な優先順位を持って開発を推進していきたいと考えています。

戦略思考入門

フレームワークで広げる視野、新戦略発見!

どう学びを業務へ活かす? 今週の学習を通じて、順序立てて俯瞰的に考えることの重要性を再認識しました。3C、SWOT、バリューチェーンといったフレームワークについては知識としては持っているものの、実際の戦略立案の場面では、これらを反射的に反応するだけで、十分に活用できていないと感じています。例えば、3C分析においては顧客と自社の要素しか分析できておらず、その他の要素についてどのように分析すべきか答えられない状態にあることに気づきました。これを受け、学習を通じて各フレームワークがどのような場面でどのように活用できるのかを理解し、今後の業務に活かしていこうと考えています。 チームの展望はどう見る? 社内では次期の予算が固まりつつあり、私のチームのアクションプランを考える時期に来ています。しかし、これまでの視点は自チームの課題解決に偏りがちだったと反省しています。そこで、3CやSWOTを用いて、現在のチームの状況をより俯瞰的に把握していく方針に転換しました。 計画の具体策はどうする? アクションプランの策定に際しては、まず現状の順序立てた分析を行います。具体的には、3C分析を通じて、顧客、市場、業界、競合を明確に分けて分析します。現在、社内のコールセンターで働いていますが、顧客設定についてしっかりと考えきれていませんでした。そこで、顧客を営業社員全員と捉え、それに対する期待されるサービスを明確に定義することにしました。また、同業他社だけに囚われず、目指すゴールに向けて不可欠な競合企業を設定することとしました。

データ・アナリティクス入門

未来を変えるデータの魔法

データはどう戦略へ? 講座全体を通じて、データ分析の重要性と問題解決のフレームワークが非常に印象に残りました。データ分析は、過去のデータを活用することで客観的かつ効果的な戦略の立案を支え、意思決定の根幹となります。また、4つのステップを用いる問題解決法は、複雑な課題を整理し、具体的なアクションプランを導き出す助けとなりました。グループワークでの意見交換を通じて得た新たな視点も、学びを一層深める貴重な経験でした。これらの学びは、今後の業務にも積極的に取り入れていきたいと感じています。 キャリア教育、なぜ必要? また、今回の学びは社員のキャリア教育や研修の現場にも十分に活かせると実感しています。社員のキャリアパスやスキルセットに関するデータを分析することで、効果的な研修プログラムの企画が可能になります。さらに、研修後の業務成果を比較分析することで、プログラムの効果を検証し次回以降の改善に結び付けることができます。社員のキャリア希望を正確に把握し、それに基づいた教育プログラムを設計することで、より有意義な支援が実現できると考えています。 改善はどう実現する? 具体的には、まず社員のスキルやキャリア希望に関するアンケートを実施してデータを収集し、その後、得られたデータをしっかりと分析します。分析結果をもとに効果的な研修プログラムを企画し、実施後は参加者からのフィードバックを反映させた改善サイクルを構築します。こうした取り組みにより、社員の成長を促進し、キャリア教育の質を一層高めることを目指しています。

戦略思考入門

自分らしさ再発見!夢を描く学びの瞬間

自社と競合の違いは? 差別化を考える際は、まず自社や競合の特徴を整理し、どのターゲットに対して差別化を図るのかを明確にすることが重要です。競合は自社が属する業種に限らず、お客様のニーズを踏まえて多角的に捉える必要があります。 価値と実現性は? 次に、差別化のポイントとして、顧客にとっての価値、自社での実現可能性、持続可能性、そして模倣されにくいかどうかを確認します。一般的なアイディアに流されず、あまりライバルを意識しすぎないことも大切です。 技術と組織を見直す? また、差別化戦略を検討する際、自社の技術や品質の新規性・優位性だけでなく、長年培ってきた組織体制や人材スキル、歴史的背景など、模倣困難な資源も幅広く考慮する必要があります。 強みの整理方法は? 業務上、事業横断の施策検討時には、VRIO分析を用いて自社の強みを整理した上で、その施策の有効性を客観的に判断することが求められます。目に見える資源だけでなく、無形の資産も言語化して整理することで、より明確な分析が可能となります。 防災施策をどう考える? 災害・防災対策の企画立案など横断的な施策の場合も、VRIO分析で自社の強みを把握しつつ、実現可能性(コスト面)、持続性、競合への模倣耐性、そして組織での実行可能性を意識して説明できるようにすることが重要です。さらに、言語化されにくい無形資産にも注目し、「ハード面」だけでなく「ソフト面」の価値にも着目して意見交換を行うことで、より効果的な差別化を実現する方針です。

データ・アナリティクス入門

データ分析で未来を切り拓く!

初期の分析結果は? 物販店の2割削減商品の仮説では、以下のような視点で分析を行いました。まず、データの重心は平均によって決定し、前年同月との販売比較を行いました。また、客単価や平均購入数、近隣店舗との売り上げ比較、顧客のインバウンド需要が変動した理由として、為替レートや可処分所得の変化にも注目しました。これに加え、アンケート施策も取り入れることで、順序立てて考えられるようになりました。 未知領域はどう? 次に、分析がまだ行われていない未知の領域を探るため、仮説を立てる必要があります。KPI以外のデータも分析の対象とすることで、現状を打破することを目指しています。そのために、データ分析手法に行動経済学や神経経済学の視点を取り入れ、心理的なデータ選択を通じて新しいデータ取得方法を確立したいと思います。最終的には、消費者の満足度や不満足度の要因を数値化し、顧客視点を重視した満足度向上に努めたいと思います。また、大量のデータを扱うため、ビッグデータ解析にも挑戦する予定です。 実務活用の振り返りは? 行動計画としては、本研修で学んだデータ分析や問題解決、仮説思考を実務でも活用していきます。これらのスキルは、データ以外の業務にも応用できると確信しています。研修で実施したことと実務での分析結果を2ヵ月間比較し、自分なりにレビューを重ねて、どれだけ浸透したかを振り返ります。また、ストレッチ領域として、ビッグデータに触れ前処理に苦労すると思いますが、実際に手を動かして経験を積んでいくことから始めていきます。

戦略思考入門

挑戦と実践の成長ストーリー

どんな効果が期待? 新たな取り組みを実施する際には、まずコスト対効果を十分に考慮し、周囲の人々を巻き込んだ計画作りを行います。既存のノウハウや取り組みとのシナジーを見出すことで、より一層効果を高める工夫も大切です。また、現状を定量的に把握し、計画実施後に数値がどのように変化するかを予測することで、計画の有効性を具体的に見える化することが求められます。さらに、部門長や経営者の視点に立ってアプローチを考えることで、戦略全体の見直しにつなげることができます。 現場で何を議論? また、具体的な課題解決の現場では、人材育成、品質向上、業務効率化などに関する検討会で各施策を議論します。来年度に実施する中期経営計画では、目標設定、現状分析、課題の抽出、そしてKPIの設定が重要なステップとなります。これらを踏まえた上で年度ごとの取り組みを具体的に計画し、同僚や部下と連携して年度目標の達成に向けたマネジメントを実行していきます。 優先順位はどう? さらに、限られたリソースを有効活用するためには、優先順位の付けや不要な取り組みを削ぎ落とす意識が不可欠です。部下全員の取り組み状況を毎月トレースできるよう、簡易な確認体制を整えることも重要です。たとえば、係長に取りまとめを任せ、課題を報告してもらう仕組みがあると、係長のマネジメント力が向上し、その結果、上位者がより高い視点で戦略を考える時間を確保できるようになります。こうした仕組みが整えば、初期段階での気づきを着実に実践に移す余裕が生まれ、全体の効率も向上するでしょう。

データ・アナリティクス入門

逆転の発想で切り拓く学び

どう仮説を組み立てる? 仮説を立てる際、3Cや4Pなどのフレームワークを活用することで、単なる直感に頼った場合に陥りがちな同じ発想の偏りを防ぐことができると学びました。フレームワークを用いることで、さまざまな角度から検討し、網羅的かつ説得力のある仮説を導き出すことが可能です。 逆の視点も意識する? また、仮説作成時には逆の視点から検証することが重要であると実感しました。反証のプロセスを取り入れることで仮説の信頼性が高まり、より客観的な判断ができると感じています。普段は「顧客の課題を定義し、その解決策を考える」というアプローチを実践していますが、解決策を検討する前に仮説を明確にすることの大切さを再認識しました。 今後の戦略をどうする? 今後は、解決策を検討する前に必ず仮説を立て、その検証を意識した取り組みを強化していきたいと考えています。「課題定義 → 仮説立案 → 解決策の検討 → 仮説の検証」というプロセスを意識することで、より論理的で根拠に基づいたアプローチが可能になると期待しています。 各部署で実践できる? 例えば、新たに導入した業務用Webアプリが期待通りに活用されていない場合、まずは「What(問題)」「Where(問題の所在)」「Why(原因)」「How(対策)」の流れで現状を分析し、各部署における利用状況や課題を明確にします。その上で、使っていない部署ごとにアプリのメリットを整理して伝えるとともに、各部署の業務にあった具体的な活用方法を提案することで、問題解決を目指します。

データ・アナリティクス入門

仮説検証で切り拓く未来

プロセスはどう検証する? 問題の原因を明確にするためには、まずプロセスを分解して検証することが重要です。解決策として、複数の選択肢を洗い出し、しっかりとした根拠に基づいて絞り込む方法が有効だと感じます。 効果はどう比較? A/Bテストでは、施策の効果を比較しながら仮説検証を繰り返します。あらかじめ検証項目を明確に設定し、1要素ずつ検証することが大切です。 データで判断する? データに基づいた意思決定を行うことで、業務の効率化や成果の向上を目指します。日常の仕事の中で仮説を立て、適切なアプローチ方法を模索してきました。過去の経験では、業務過多のため情報共有が主にメールに頼っていた状況もあり、その際はA/Bツールを利用して、理解度や反応の良さといった観点から効果のある方法を試してみました。例えば、メールでの通知と社内共有ドライブへの保管を比較する取り組みが挙げられます。 学びをどう定着? Week5までに多くの分析手法を学びましたが、学んだ内容を自分のものにするためには、メモを振り返りながらフレームワークの活用やデータ加工、さらに比較する際にどのグラフを使用するのが最適かを検討することが必要だと感じています。まずは実践を通じて知識を定着させ、現代ではAIの助けを借りながら調査の時間や手間を省いていきたいと考えています。 新分野はどう理解? また、動画学習を通じてWebマーケティングの指標など新しいエリアにも触れる機会があり、専門外の分野に対する理解がさらに深まったと実感しています。

データ・アナリティクス入門

課題解決スキルが劇的に向上する方法とは?

実践による学びの深まり Week1から継続して学び続けた内容を、ライブ授業の演習を通じて「一気通貫」で実施することができ、実践に活用するイメージが具体化しました。特に、仮説は一度立てたら終わりではなく、段階ごとに検証を通じてブラッシュアップしていくこと、また分析は比較であることを強く感じました。さらに、課題解決のプロセスは「What→Where→Why→How」という順序で考えることが重要であると学びました。このプロセスを進める中で、「データのビジュアル化」や「多様な切り口を考えること」の大切さも再認識しました。 課題解決の新たな視点とは? 自分の仕事は基本的に社内の「課題」を解決することが主な業務であり、この講座で学んだ内容はあらゆる場面で活用できると確信しました。これからは、課題解決のプロセス「What→Where→Why→How」を常に意識したいと思います。問題を解決する際には、直ちにデータ分析に取り掛かるのではなく、まず問題の定義から始め、問題点を特定して原因を分析するというプロセスを「事前」に頭の中で描くことが重要です。それにより、無駄な作業やヌケモレを防ぎ、「How」を忘れずに取り組むことが可能です。 事前準備の重要性について 具体的には、すぐに「データ分析」に取り掛からないことを意識的に行い、事前にそれぞれの課題解決プロセスで必要な「タスク」をイメージし、タイムラインを引いて計画を立てることが大切です。最初はしっかりと言語化し、プランをドキュメントに起こしておくことを心がけます。

戦略思考入門

顧客視点での差別化戦略の鍵

顧客視点が重要なのはなぜ? 差別化戦略を考える際には、競合にばかり気を取られず、まず顧客の視点に立つことが重要だと感じます。差別化戦略において「選択と集中」は大切ですが、同時に複数の施策を実行できれば競争力はさらに高まります。環境は常に変化するため、自社の強みも定期的に見直すことが必要です。しかし、特定の強みで大規模な成功を収めた場合、方向転換は難しく、そうした課題に対応できていない企業も多いのではないでしょうか。 海外での専門性はどう活かす? ITベンダーとして国内外で仕事をしていると、国内では顧客の要望に柔軟に対応しますが、海外では専門性がないと認められません。実際には、複数のIT技術を扱うといっても、全てを深く学ぶことは難しく、場合によっては表面的な対応に終わってしまうことがあります。また、若手社員が勉強しても、次の仕事では別のことを任されると思うと、学ぶ意欲を維持しにくく、成長を実感できないことがあるようです。企業も専門性を重視し、業務を外注することで、社内で一貫した比較や統合を行うように変わってほしいですね。私は、そのような姿勢を企業に対し提案していきたいと考えています。 自身の専門性をどう高める? 幅広く知識を習得しつつ、自分が得意とするAIやデータ分析、ソフトウェア工学の分野では積極的に情報発信を行い、自身の専門性をアピールしています。例えば、2月9日にはAIエージェントについて、2月10日にはGraphRAGについての発表を予定しており、これを確実に実施したいと考えています。

クリティカルシンキング入門

未来を切り拓くクリティカルシンキングの旅

どのように過去を振り返るべきか? WEEK 1からの学習を振り返ると、断片的には思い出されるものの、見返したりライブ授業での振り返りによって多くのことを再確認できました。もう一度、おさらいとして見直しをしたいと思います。また、思考の出発点である「問い」を明確にし、問い続けることを意識的に徹底したいです。 課題を見つける勇気は持てていますか? 私はルーティン業務外の中長期視点の課題や問題について、つい後回しにしてしまう傾向があります。自分が考えやすい、考えたいことを先に考えてしまいがちなためです。ただ、こうした課題の中にこそ本質的な会社の課題が潜んでいる可能性があると思います。勇気を持ってその扉を開けてみたいと思います。 例えば、人員配置の適正化はビジネスモデルの変革にも影響する壮大なテーマかもしれません。また、海外展開強化に向けた現状課題の真因を探ったり、新規事業を模索する際にはバイアスをかけないように意識したりすることが重要だと考えます。 問いを明確にする方法は? 現状分析を試みる際にはフレームワークを使いますが、まずは問いを明確にし、一貫した問いにすることが大切です。そして、その問いについて共有するように心がけます。客観的な視点で考え、正しい日本語で文字に起こすよう意識します。相手が知りたい内容や興味を持てる資料であるかどうかも重要です。 小さな課題から何を学ぶ? 反復トレーニングの一環として、小さな課題を使ってクリティカルシンキングを体験することも続けていきたいと思います。

データ・アナリティクス入門

データで見つける!チーム改善の極意

目的は何を求める? データ分析において、まず目的を明確にすることが重要です。比較対象や基準を設けて仮説を立て、分析を進めることで、確実な意思決定につなげることができます。また個人的に、円グラフと棒グラフ(縦横)の使い分けが参考になりました。これまでは棒グラフの方向についてあまり意識していませんでしたが、今後は意識的に使い分けていきたいと考えています。 業務はどう進める? 現在、私はR&D部門で営業支援機能の一環として、顧客向けPoC作成や自社商材のクロスセル・アップセル立案を行っています。この中で、KPIの進捗率が良いチームと悪いチームが存在します。進捗率の悪いチームに対し、原因を分析してどのような支援が必要かを検討するための材料とする予定です。講義を受け、現在の業務の大半が定性的な要素に支配されていることに気づきましたが、これらも定量的なデータとして取得可能であることに今後注力していきたいと考えています。 指標はどこを確認? 具体的には、目的を「進捗率の良いチームと悪いチームの差分を捉え、悪いチームのパフォーマンス改善につなげる」と設定しました。KPI管理している指標の前段階にある要素をロジックツリーで再度分解し、KPI設定に漏れがないか確認します。この過程で、数値データを得るための手法を考え、進捗率の良いチームと悪いチームへ調査を行って数値を取得します。同じ条件のデータ同士で比較して差分を捉え、数値的な差異からどのポイントで躓いているかを特定し、支援方法の検討につなげます。

「分析 × 業務」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right