戦略思考入門

経済の本質を学び行動計画に活かす

規模と範囲の経済性は? ゲイルでの学習を通じて、経済の基礎概念である「規模の経済性」や「範囲の経済性」について学びました。規模の経済性については、生産量が増えることでコスト削減が可能になるという原理を理解しましたが、実際にはロスが生じる可能性があり、注意が必要です。一方、範囲の経済性では、既存の資源を有効に活用し、新たなビジネスチャンスを生むことができる点を学びました。例えば、業界の垣根がなくなりつつあるコンビニやドラッグストアの事例がこれに該当すると理解しました。同時に、多角化のリスクを認識し、安易な事業拡大を避けるべきであることも学びました。 本当に正しいのか? これまでなんとなく受け止めてきたことを、「本当にそれで正しいのか?」と問い直すことの重要性を改めて感じました。感情や一般的な認識に基づいて判断すると、大きなミスにつながる可能性があります。単なる感覚的な理解ではなく、本質的な意味を理解することが重要です。 総合演習の成果は? 総合演習では、学んだ知識を実際に活用し、ビジネスケースを分析する経験を積みました。これまでの学習が役立ち、複数の視点から問題を分析し、最適な解決策を提案する力が求められる場面が多く、とても良い経験となりました。特に、安易に施策を実行に移さず、目的や市場分析をしっかり行った上で最適な施策を打てるように心掛けたいと思います。 部署の経済性は? 現在の部署のメイン業務が業務集約であるため、「範囲の経済性」は部署内の異なるチーム間で活用できそうです。あるチームで開発したDX業務を他チームの業務に取り入れることは実行可能であると感触を得ました。また、規模の経済性はすでに私の所属部署に適用されており、業務集約と自動化により生産量が増えることで、コストを抑えながら効率を上げることが叶っています。 数字で計画見える? 行動計画は、企画立案時には定量的な数値を活用し、見えない数字を引き出せるよう目指します。また、全体を俯瞰したうえで課題を解決に導くために、戦略的思考を習慣化し、思考力と判断スピードの向上を図りたいと考えています。

リーダーシップ・キャリアビジョン入門

キャリア探求で見つけた自分らしさ

価値観をどう見直す? 実践演習を通じて、自分の仕事に対する価値観を見つめ直す機会となりました。特に「愛他性」「社会的交流性」「社会的評価」を重視していることに初めて気づくことができ、体系的に学ばなければ気づかなかったであろう自分自身の特性や、仕事に対する価値観が人それぞれであるという実感を得られた点は大きな学びだったと感じています。 キャリアの見極めは? 一方で、自分のキャリアアンカーを一つに絞るのは難しいと感じましたが、セルフイメージと向き合う中で、やっとのことで「特定専門分野・職能別コンピタンス」が自分にフィットするという結論に至りました。他の人にインタビューしてキャリアアンカーを確認するのはハードルが高いと感じるため、今後は課内の会議などで実践する機会を設けてみたいと思っています。 サバイバルの必要性は? また、キャリア・サバイバルは極めて重要なテーマだと感じました。創設から6年目を迎えた組織は、近年の人員増加や環境の変化、テクノロジーの進化などにより、仕事のやり方も大きく影響を受けています。そのため、組織全体としてキャリア・サバイバルを考える必要性が高いと実感しました。自分自身のキャリアアンカーを理解することは、課内のメンバーが自信を持って仕事に取り組むための基盤となるため、これをテーマに講義を実施し、アウトプットを通して知識を定着させていきたいと考えています。 来年度計画は? 加えて、来年度の組織のOSTおよび人員構成の最適化を検討する上でも、キャリア・サバイバルの視点は大いに役立つと感じました。今期中に取り組みを開始し、その成果を上長にレポートしながら、来年度の計画の素地としていく予定です。また、「キャリアアンカーとは?」という内容は、4月から5月頃に自組織向けの講義として実施し、新年度に向けて課内のメンバーが自身の仕事観を再確認し、意欲を高めるタイミングとして活用したいと考えています。さらに、キャリア・サバイバルに関しては、3段階のステップで取り組む計画であり、各ステップに1か月から3か月の目標を設定しながら進めていきたいと思います。

クリティカルシンキング入門

データ分析で発見した新たな視点

分解ってどう使う? データ分析を行う際、「分解」の重要性とその手法について新たな知識を得ることができました。単に数字を切りの良いポイントで区切るのではなく、まず全体を適切に定義し、必要な情報を明確にした上で、どこで分解すれば全体像が把握できるのかを試行錯誤することが重要であると演習を通して理解しました。 数字の見える化ってどう? さらに、数字をグラフ化して視覚的に表現したり、比率に変換して加工することで、数字だけでは発見しづらかった情報が明らかになることを学びました。分析の初めには、全体を定義して目的を設定し、MECEを意識しながら抜け漏れなく分析を進めることが、業務の効率的な進行に寄与することを認識しました。どのような結果になっても、価値や発見があり、それらはすべて自らの成長に繋がるものだと考え、ポイントを押さえて思考を続けていきたいです。 目的設定ってどうする? 売上やWebページのアクセス数を分析する際に、今までは表面的な数字を追うだけで、原因や改善点が明確になりませんでした。しかし、まず全体を定義して目的の方向性を決めることから始め、MECEを活用しながら漏れや重複を避けつつ課題を分解して解決を図りたいと考えています。分解後には、グラフや比率といったさまざまな視覚化方法を用いて、最適な分析手法を見つけ出し、短期・中期・長期目標の達成に必要なアプローチを定期的に戦略的に見直していきたいと思います。 毎月どうチェックする? 売上やWebページのアクセス数の分析を日々確認し、毎月、前月との比較を行いレポートを作成したいと考えています。基本的には、最初に決めたMECEを活用した分解で分析を進めていきますが、毎月自身の分析方法で問題が解決できているかを見直し、分類についても考え続けたいです。 PDCAをどう進める? 単一の仮説ではなく、2~3つの仮説を立て、その中から最も信頼性があり改善しやすいものを選び、行動に移していきます。2週間から1ヶ月試行し、うまくいかない場合は次の仮説で改善するというPDCAサイクルを実行していきたいと思います。

マーケティング入門

マーケティングの視点で業務を変革する学び

学びの成果は? すべての学びが非常に役立ち、業務での課題に取り組む際の参考とすることができました。学ぶ前は、どこから手をつけるべきか、何が正解なのか全くわからず、周囲の経験に合わせたり、指示されたことをこなすだけの状態でした。マーケティングを学び、フレームワークを活用することで、何を使えば業務が効率よく進むのか考えられるようになったことは大きな成果です。 競合意識の再考は? 以前から競合他社には意識を向けていましたが、会社「らしさ」や「強み」にはほとんど目を向けていませんでした。売り上げに重点を置き過ぎ、ただ売ることが目的になっていたのだと思います。最初の週で学びましたが、お客様が欲しいものを提供し、それが売れることによってキャッシュが生まれるという基本的な考え方を理解していなかったと感じました。 今後の戦略は? 今後は顧客重視の視点を大切にしながら、自社の強みや特色を生かして、製品や提供を考えていきたいと思います。この学びを活かして、日々の業務に取り組んでいきます。 商品の成長策は? 既存商品の中で再び注目させたい商品を選び、認知度を高め主要商品に育てていくにはどうすればいいのかという課題に取り組んでいます。どのマーケティングフレームワークが適切かはまだ模索中ですが、AIDMAを活用して商品を購入してもらうための仕組みを構築しようとしています。これまでの会議で、フレームワークを使い順序立てて見極める提案をしたことがあります。 知識の活かし方は? 新しいイベントなどにも課題がありますが、今回得た知識をどう活かしていくべきか模索しています。学びをさらに深め、自分の業務に適用できるフレームワークを見つけたいと思っています。 日々の復習はどう? まずは学びを何度も復習しながら、自分の仕事にどう当てはめられるのか再度意識します。学びの中で重要性を知ったゲイルや振り返り、グループワークでのアウトプットを積極的に行い、周囲にも成果を共有していきたいと考えています。そして、学びを継続するために時間を決め、学ぶことをルーティーン化していきます。

データ・アナリティクス入門

分類の新視点、成功への一歩

分析とは何? 「分析=分類」という視点は、データ分析の本質を捉える上で非常に重要だと感じました。膨大な情報をそのまま扱うのではなく、目的に応じて比較可能な形に分類・整理することが、分析の第一歩であると認識しています。また、「分析とは比較なり」という言葉が示すように、異なる要素や時点を比較することで、初めて傾向や違いが明確になっていく点も学びました。 目的はどう明確? さらに、分析には明確な目的が必要であり、仮説を立てて検証するサイクルを回すことが、意味のある結果を得るために不可欠だと実感しています。この考え方は、数値の単なる把握に留まらず、どの部分を改善すべきか、どうすれば成果が上がるのかといった具体的な施策検討へとつながるものであり、今後の業務に積極的に取り入れていきたいと考えています。 講座促進策はどう? また、データ分析の知識は、当社が推進している講座の受講促進において大いに活かせると期待しています。具体的には、対象となる教育機関や宿泊業界における研修実績や予算、過去の導入事例などを定量的に整理・分析することで、より効果的な提案資料の作成や、営業の優先順位付けが実現できると感じています。さらに、各施策ごとの反応や申込数などを時系列で可視化することで、PDCAサイクルの精度向上にも寄与するはずです。 ターゲット抽出はどう? まずは、教育機関や宿泊業界の人材育成に関するデータ収集から始め、公開情報や補助金制度、業界レポート、ヒアリングを通じて得た情報をExcelで整理します。次に、予算規模や研修回数などの傾向を数値化し、明確なターゲット層を抽出していきます。その上で、ターゲットごとのニーズに合わせた提案資料を作成し、営業活動に活用する計画です。また、講座紹介の販促施策における各種反応率を記録・比較し、次回以降の営業活動の改善点を把握できるようにしていきたいと考えています。 継続学習はどう進む? 今回学んだ知見を踏まえ、まずは小さな一歩を着実に進めながら、継続してデータを扱う習慣を身につけ、業務の中で活用していく所存です。

データ・アナリティクス入門

データ分析で見つけた新しい視点と手法

なぜデータ分析の目的が重要? 今回の講座を通して、データ分析の方法について新たな視点を得ることができました。これまでは、やみくもにデータ分析に取り掛かりがちで、HOWにばかり目を向けていましたが、まずは目的や問題点を特定し、そのうえで分析を進める重要性を認識しました。また、複数の仮説を持ち、それを検証するプロセスも新たな学びとなりました。この講座を通じて、アウトプットの重要性も改めて実感しました。インプットしたことはすぐに忘れてしまうため、学んだことを自分の言葉にする時間を確保し、習慣化することが大切だと感じました。 データ分析のステップとは? 現業務においては、データ分析をプロセスに分けて取り組みたいと思います。具体的には、目的の設定、問題点の特定、原因の分析、解決策の検討というステップを踏むことで、自分の行うデータ分析の目的を明確にし、どのような視点で仮説を考えるべきかをシャープにしていきたいと考えています。 データ分析の型をどう身につける? また、データ分析の型を身につけたいと思います。特定の分析を行う際の型が身についていれば、データ分析の実行が容易になると感じました。例えば、特定の状況で使う分析手法をあらかじめ知っておくことで、効率的に進められるでしょう。 学びを習慣化する方法は? さらに、自身の成長のためにも学びやアウトプットを習慣化したいと考えています。講座を通じて行った振り返りやグループワークでの意見交換は、知識や思考を深める助けとなりました。これを続けて習慣にしたいと思います。 実践知識をどう高める? データ分析の実践知識についてもさらに勉強を進めたいです。他社事例などを参考にしながら、より鋭い経営分析や戦略検討ができる基盤を築けるよう努力します。 BS項目の分析はどう進む? 特に、まだ分析が進んでいないBS項目については、プロセスに則って分析し、課題解決に取り組む予定です。また、週に1度はアウトプットの日を意識的に作り、学んだことを整理し、反省点や来週の目標設定を行う時間を確保したいと思います。

データ・アナリティクス入門

仮説検証で切り拓く未来

仮説検証はどう進める? 原因についての仮説を立て、その検証のためにデータを集積することは、とても重要なプロセスです。思考の整理には、フレームワークの3C(Client, Competitor, Company)や4P(Product, Price, Place, Promotion)を活用することで、さまざまな視点から情報を捉えやすくなります。また、データの集積方法としては、複数の仮説を構築し、比較するためのデータを収集すること、さらには反論を排除できる情報まで踏み込むことが求められます。 仮説思考って何? 仮説思考には「結論の仮説」と「問題解決の仮説」があり、特に後者はWhat > Where > Why(原因追及) > How(Solution)の順序で検証することで、その精度を高めることができます。これまでは、業務上の課題に対し、2~3の情報のみで仮説検証を行っていたため、フレームワークや仮説プロセスを十分に活用できず、深堀りができていなかったと感じます。 情報の正確さは? 複数の視点から検証を行うことで、偏りのない包括的な情報が得られると同時に、正確なデータと信頼性の高い情報源へのアクセスの重要性を改めて認識しました。不正確な情報による誤解を避けるためにも、情報の正確さは不可欠です。 過去の教訓は何? 過去の業務を振り返ると、複数のデータベースを活用していたため、データ統合の正確さや集積時点の一貫性が取れていなかったことを反省するとともに、自分のデータ分析に対する知識不足を痛感しました。今後は、正しい仮説を立てることで説得力を持たせ、より正しいアクションへと結びつけていきたいと考えています。 実践で学ぶ仮説は? また、日常のさまざまなシチュエーションにおいても仮説検証を実践し、Week4で習得した知識を無料研修などの実践の場で活用していくつもりです。問題解決の仮説プロセス(What > Where > Why > How)を業務に取り入れることで、仕事の分析や効率、精度の向上につなげていきたいと思います。

データ・アナリティクス入門

AIDAとAIDMAを理解して見直す購買行動

AIDAとAIDMAの区別は? 「AIDA」と「AIDMA」の違いについて学んだ結果、これまで曖昧だった理解が整理されました。 AIDAの流れはどう? AIDAモデルは、顧客が商品やサービスを購入するまでのプロセスを4つの段階で説明します。最初のAttention(注意)では、消費者が商品やサービスに興味を引かれる段階で、広告やプロモーションが効果的です。次にInterest(興味)で、消費者はさらに情報を求めます。Desire(欲求)の段階では、消費者の心に商品を手に入れたいという欲求が生まれ、最後にAction(行動)で、実際に購入に至ります。 AIDMAは何を重視? AIDAとAIDMAの違いも明確になりました。AIDAは購買行動にフォーカスしていますが、AIDMAは購買前の心理プロセスと記憶を重視しています。AIDMAは消費者が購入に至るまでの詳細な心理プロセスを分析するために適用されます。 ダブルファネルとは? また、「ダブルファネル」という概念についても学びました。これは、パーチェスファネルとインフルエンスファネルを組み合わせたもので、消費者の行動をより詳細に分析することができます。パーチェスファネルは、商品認知から購入までの過程を表し、インフルエンスファネルは購入後の情報発信までの過程を示します。この分析を通じて、顧客行動のボトルネックを特定することが可能です。 クリック率はどう見る? デジタルマーケティングにおいては、クリック率やコンバージョン率の分析が非常に重要です。例えば、当社のWEBサービスのFAQメンテナンスでは、汎用性の高い回答を用意し、0件回答率とミスマッチの原因を分析しています。これにより、顧客満足度の向上を図ることができます。また、掛け合わせたデータを用いて、NPS(ネットプロモータースコア)の向上方法も模索しています。 実務にどう活かす? これらの知識を実務に活かすことで、FAQの分析やマーケティング施策の改善に役立てていきたいと考えています。

クリティカルシンキング入門

実務に活かす!切り口探求の記録

授業の成果は見えてる? ライブ授業では、知識がまだ十分に定着していないと実感しました。初めの週の振り返りを通してその点を再認識するとともに、ある事例のワークでは切り口を見つけるのに非常に時間がかかりました。初めて取り組む内容だったため、ビジネスの現場において同じケースはほぼ存在しないという考えに至ったのは、良い学びだったと感じています。 分解手法の実践は? 分解の手法については、日々の業務や気になるニュースに対して実践を重ね、より定着を狙っていくつもりです。また、今回の事例は身近な体験であったこともあり、理解の助けになりました。しかし、施策のまとめにあたっては、情報の整理や抽象化する力の不足を痛感し、今後の課題として捉えています。 業務での応用はどう? 業務へのあてはめでは、まず月次実績の振り返りに分解の手法を活用しようと考えています。会議やミーティングでは、目的やゴールを再確認し、論点を明確にすることで、各参加者の立場を意識しながら進められるよう努めます。授業での学びを活かし、どのイシューに対するアクションプランなのかを意識して取り組みたいと思います。 学びの定着を実感? 学びを定着させるため、振り返りと実践を習慣化する行動計画も立てています。まず、記憶が断片的になっている点や整理しきれていない事項について、初めの週からの学びを再実施し、ノートをまとめ直します。さらに、日々の意識向上のためにスケジューラーのリマインダー設定も見直します。 実践の成果は見える? 実践面では、日々の業績確認の習慣として、売上の全体だけでなくカテゴリー別やブランド別に分解して確認する方法を導入し、月次実績にも応用していきます。会議の際は、日時が決定次第予定に反映し、目的やゴール、論点などをメモ欄に記載して意識を高めるとともに、ロジックツリーを用いて思考の整理や分析力の向上にも努めます。さらに、発信する内容および依頼された内容も、最初の目的とそのプロセスを常に意識しながら取り組む所存です。

データ・アナリティクス入門

挑む学び!仮説が広がる瞬間

課題と仮説の意義は? 今週は、課題設定と仮説構築の重要性について学び、サンプルデータを用いた実践を行いました。課題を具体的に明確化することで、その後の仮説の精度が向上することを実感しました。また、立てた仮説に固執せず、検証結果に応じて柔軟に視点を変えることの大切さにも気づかされました。仮説が立証されなかった場合には、別の原因を積極的に探る姿勢が求められます。 なぜ業務は偏る? 営業店の業務負荷にばらつきがある場合、単に「業務量が多い」という理由で負担が大きいと判断するのではなく、どの業務が集中しているのか、フローに非効率な点があるのか、人員配置に偏りがあるのかといった具体的な仮説を立てた上で、必要なデータを特定し検証することが重要です。仮説を基に、どのデータを取得し、どのようなグラフで可視化するかを事前に整理することで、分析の精度が高まります。たとえば、営業担当者ごとの業務時間の偏りを分析する際、移動時間の長さや業務の種類が要因となっているかを検証するために、ヒストグラムや散布図の活用が考えられます。 定量指標は何故大切? 課題設定の精度向上には、定量的な指標を明確にすることが不可欠です。業務負荷の偏りを評価する場合は、「1人あたりの業務処理件数」や「1件あたりの処理時間」を指標とし、営業成績の低迷については「訪問件数」や「折衝時間」、「成約率」を基に状況を把握します。現場の意見をヒアリングし、課題感を共有した上で、分析すべきデータを整理することで、的外れな分析を防ぐことができます。 現場の意見は鍵? また、仮説構築とデータ収集の精度を高めるためには、複数の仮説を立て、どの仮説が有力かを検証する手法が有効です。たとえば、「営業成績の低迷要因」として、訪問件数の不足、折衝時間の短さによる十分な説明ができていない、または高額商品の偏った営業活動といった仮説が考えられます。とりわけ、営業活動に関する領域知識が不足している状況では、現場からの意見を積極的に取り入れた仮説設定が必要だと感じました。

データ・アナリティクス入門

営業の新たな武器:ロジックツリー活用法

問題解決にステップで挑む理由は? 問題について「ステップで考える」という当たり前のことができていないことに気づけました。自分の場合、ヒューリスティックに考える癖があり、アルゴリズム的に考えるのが苦手です。文中の「ステップで考える」とは、自分にとって苦手なアルゴリズム的な手法を指しますが、その手法としてロジックツリーの有用性を学べたことが大きな収穫でした。 ロジックツリーの具体的活用法とは? また、ロジックツリーの知識はありましたが、具体的な活用方法を改めて学べたことも大きいです。営業として売上分析をする際にMECE(Mutually Exclusive, Collectively Exhaustive)を意識していましたが、パレート分析に頼ることが多く、満足のいく結果を得られないことが多々ありました。今後はロジックツリーも活用してみたいと考えています。 今回学んだ「ステップで考える」方法やロジックツリーを用いて問題を分析し客観視させることで、問題意識の共有と具体策の議論が行えると期待しています。 社員教育の脆弱性をどう改善する? 私は所属する事業部で社員教育の脆弱性を強く感じています。問題提起を上席者や同僚に行っても、具体的な解決策の議論まで進めないことが多くありました。振り返ると、私の提案がMECEになっておらず、同意は得られても他者を巻き込むことができなかったと感じています。まずは自分の問題意識をロジックツリーに落とし込む作業を業務の合間に行おうと思います。 社員教育の必要性をどう確立する? 具体的には、社員教育の必要性についてロジックツリーを展開しようと思います。まずは「社内」「社外」という切り口で悪影響を及ぼす具体例のツリーを作成します。次に「研修制度」と「自主的な学び」という切り口で現状を示します。最後に、これらを強化・促進するための案を示し、上席者だけでなく同僚へも問題提起しようと考えています。 さらに、他の提案や営業政策などにもロジックツリーを活用してみるつもりです。

データ・アナリティクス入門

繰り返しが生む新たな発見

繰り返しの学びって? 全体を振り返ると、何度も同じ内容について整理し、記述を繰り返すことが学習において非常に重要であると実感しました。このプロセスの意味を学習テーマとは別に考えることで、新たな学びを得る機会となりました。 仮説疑問はどう? コースの初めに、「仮説とは何か」という疑問を持ち、データ分析のアプローチが状況により異なることを知りました。すでにデータが存在する場合と、データが無い場合では、分析に至る過程や組み立て方が大きく異なります。 既存データの活用は? 先にデータが用意されている場合は、目的を明確にした上で、データの特徴を探り、どの要素を比較するか、どのような傾向や動きを把握するかを平均、標準偏差、相関などの分析手法を活用して明らかにしていきます。その結果、見えてきた情報を体系的に整理することが可能となります。 無データの場合は? 一方、データが先に存在しない場合は、まず解決すべき課題や手がかりを見つけ、その観点に沿ったデータを収集します。具体的には、What-Where-When-Howという視点を順に確認し、マーケティングの基本的な枠組みを参考にしながら、適切なデータを取得し、課題を明確化するプロセスを進めます。その際、解決策や成功の可能性も同時に検討していきます。 記述重ねる理由は? また、同じ質問に何度も答え、記述を重ねる過程の意義についても改めて考えさせられました。学んだ内容が蓄積される中で、実際の業務にどのように適用できるかを具体的にブラッシュアップする必要があると感じました。 分析手法の見直しは? Q1では、分析に対する取り組み方を整理することができました。特にデータが既にある場合は、データを加工するための手法と知識が不可欠であることを再認識しました。しかし、今回のコースではその実践的な部分までは触れていなかったため、過去の振り返りと同様の記述となりました。今後は、実際に手を動かしてデータを扱う内容を学ぶ必要があると感じました。

「知識」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right