マーケティング入門

ポジショニングの力でターゲットを引き寄せる学び

ポジショニングの重要性を学ぶ 商品戦略を考える上で、ポジショニングの重要性を学びました。具体例として、ワークマンやポッキーの事例が挙げられます。これらの企業は、商品自体に変更を加えず、ターゲットに対する価値の整理を行うことで、ヒット商品を生み出しました。これにより、新商品を考えることが必ずしも最適解ではないと理解しました。 新たな価値提案の方法は? 我が社においても、既存の商品や事業に対して、新製品の開発や全く異なるセグメントの検討を急ぐのではなく、訴求ポイントを整理することで新たな価値を顧客に提案できると考えます。 差別化マップで見える化する 具体的には、まず自社の製品の特徴を洗い出し、顧客のニーズを整理した上で、顧客に訴求するポイントを明確にします。その後、ライバルとの差別化を図るため、差が明確に伝わるポジショニングマップを作成することが重要です。

データ・アナリティクス入門

フレームワークで未来を拓く

3C・4Pの活用法は? 3C・4Pなどのフレームワークを活用して仮説を立てる重要性を改めて実感しました。なんとなく思いついた仮説では、他に考えられる可能性を見逃してしまう恐れがあります。一方で、フレームワークを用いることで、仮説の検証に必要な分析も効率よく進められるようになりました。 株式事務の仮説立案は? また、株式関連の事務においては、過去の経験や従来の分析結果に捉われず、さまざまな視点から仮説を立て、検証していくことが大切だと感じています。そのため、3C・4Pを活用し、複数の仮説を意識しながら業務に取り組むよう努めています。 実務検証の流れは? さらに、実際の業務では4P・3Cのフレームワークを使って分析を行い、課題に対して複数の仮説を出すことを徹底しています。そして、仮説の検証に必要なデータの抽出や分析も合わせて行うことを意識して作業を進めています。

データ・アナリティクス入門

現場の知見!多角的視点で切り拓く未来

分析の始まりは何? データ分析は、基本的に各要素の比較から始まります。分析を行う前に目的をはっきりさせ、まず仮説を立てた上で必要なデータを収集することが重要です。一つの考えに固執するのではなく、複数の視点から検証し、さまざまな可能性を考慮することが求められます。 フレームワークは役立つ? これまで学んだフレームワークを実務に応用し、再度データ分析に取り組むことで、現状の問題点や改善策が明確になります。たとえば、株式データや取引先データを活用し、視覚化することで、より説得力のある分析と問題解決が可能となります。 必要なデータは何? また、何が問題であり何を解決すべきかという目的を常に見失わないようにすることが大切です。さらに、どのような意思決定を行うために、どんなデータが必要かを明確に考え、取得できるデータをなるべく多く把握する姿勢が求められます。

データ・アナリティクス入門

問題解決と最適化に役立つ具体的手法を学ぶ

問題解決の順序がカギ? 問題解決のプロセスについて、「What、Where、Why、How」の順に進めることの重要性を再確認しました。問題理解と適切な対策を講じるためには、なぜなぜ分析を行い、真の原因を見つけ出すことが不可欠です。このプロセスは、提案時の逸注分析やプロジェクトのトラブル、営業活動におけるクレーム対応などの場面で活用できます。 A/BテストでCROを最適化するには? また、A/BテストがWebマーケティングにおけるCRO(コンバージョン率最適化)の手法の一つとして有効であることを学びました。この手法は事業プランの策定時にも有効です。具体的には、異なる案を用意して比較し、優れた点を組み合わせてブラッシュアップしていく方法です。マーケットプランにおいても、自社案と協業先の案を出し合い、検証や補完を行うことで、より確実なプランを作成することができます。

クリティカルシンキング入門

異常値の謎解き!在庫管理の舞台裏

多角視点で深く見る? 目の前で起きている事象については、安易に結論を出さずに、多角的な視点で深く理解を進めることが重要です。機械的にただ分類するのではなく、分類を行う際には仮説を持って切り分けることが必要です。 異常値の謎は何? 私はクライアントワークで製造業の在庫管理を担当しています。その中で、異常値が見られた場合には、なぜその異常が発生しているのかという仮説を立て、原因を特定するよう努めています。その特定方法には、グラフ化や分類を活用し、他者に分かりやすく、簡潔にまとめることを心掛けています。 現場の声、どう活かす? また、在庫管理システムにダッシュボード機能を追加する予定です。このダッシュボードには、様々な切り口での指標を記載する計画です。その際、自分の視点だけでなく、現場の意見も取り入れ、多角的な視点で実装を行うようにしています。

データ・アナリティクス入門

比較が切り拓く使いこなしの未来

比較って何が重要? 分析というと、難しい数字を使った調査と思われがちですが、本質は「比較」であると学びました。比較は、目の前にあるもの同士だけでなく、目的に応じて見えていない要素も想像して行う場合があります。 活用状況はどうする? プロダクトにおける顧客の活用状況では、十分に使いこなせていないケースの課題を抽出し、もししっかり活用できた場合のシミュレーションを定量的な数値で示すことが重要です。こうして、利用促進のきっかけを提供すると同時に、プロダクト自体の改善点にも繋げられると実感しました。 目的はどう定める? また、比較対象を決める際には、分析の目的と照らし合わせながら選定することの大切さを学びました。私自身、問題が発生した時に手段に頼りがちな傾向がありますが、今後は目的を明確に定義し、しっかりと把握する意識を一層高めていきたいと思います。

クリティカルシンキング入門

分析の視点で新たな発見を振り返る

分析における多角的視点の必要性 データの分類や分析において、偏りのないように複数の切り口を考えることの重要性を感じました。そして、そこから生まれたインサイトが本当に正しいのか、網羅的に考えられているかを見極める必要もあると理解しました。これは実務でも同様で、仮説に基づいて行動する際、その仮説が正しいかどうか、考えに漏れがないかを確認することが非常に大切だと思います。自身の業務に限らず、さまざまな業界の分析を行う際にも、抜け漏れがないように、その都度確認する必要があると感じました。 データ再分類のアプローチは? また、異なるプロジェクトにおいても、共通点やどのように分類できるかを常に言語化するスキルを身につけたいと考えています。過去のアウトプットに関しても、新たな切り口でデータを再分類できないかを模索し、再検討とアップデートを続けていきたいと思っています。

データ・アナリティクス入門

どのデータを集めるかが未来を決める

比較の重要性を再考する 分析の本質は比較であることを学びました。これまで、比較対象の選定や要素の統一が不十分だったため、正確な分析ができていなかったと感じます。特に、生存者バイアスがかかってしまうことが多かったことを反省しています。 実証実験で得る結果は? 新規事業を創出する部門に所属しているため、秋から行う実証実験ではデータの適切な分析と比較対象の正確な選定を心掛け、意味のある結果を得たいと考えています。また、取得したいデータの設計も行い、目的に合った実証実験を行いたいと思います。 適切なデータ設計とは? 実証実験の目的を再確認し、成功と見なされるために必要な情報を考えます。どのようなデータを取得すればよいかを設計し、それを企画に反映させます。分析の本質は比較にあることを常に念頭に置き、適切な比較対象を設定することを意識して進めていきたいです。

クリティカルシンキング入門

業務に生かす学びの再発見

業務にどう活かす? 学んだ内容を自身の業務にどう生かすか、真剣に考えるための良い機会となりました。今回の復習を通じて、常に自分自身に問いを投げかけ、この方法や考え方が正しいのかを自問自答する癖を身につけたいと考えています。 提案はどう見直す? また、提案にあたっては、提供価値が適切に整理され、相手の立場からもベストな提案や回答になっているかを意識するよう努めたいと思います。知識はあるものの、業務に落とし込みきれていない同僚も多い中で、私自身が第三者の視点から客観的な指摘を行う役割を担うことも大切だと感じました。 習得はなぜ重要? 総復習の機会を通じ、日常的に学んだことをしっかりと身につけることが重要であると再認識しました。自分なりのフレームワークを確立し、それを業務に定着させる習慣をつけることで、さらなる成長を目指していきたいと思います。

データ・アナリティクス入門

小さな検証がもたらす大発見

A/Bテストはどう活かす? A/Bテストの手法を学ぶ中で、基準を揃えた上で複数のパターンを試し、比較検証することの重要性を実感しました。また、A/Bテストに限らず、比較を行う際には条件を同一にすることが必要であると感じています。 仮説検証はどう進める? 仮説検証については、小さなサイクルを繰り返すことが効果的だと考えています。月次実績を追いながら、仮説検証を実施し、特に割合の比較を日々の業務に取り入れることで、より正確な分析が可能になると認識しています。 UI/UXはどう評価する? さらに、アプリケーション開発に携わる立場から、UI/UXの検討においてもA/Bテストの手法を積極的に活用していきたいと思います。現業務で実際に数値をもとに比較を行っている経験を踏まえ、今後も引き続きこのアプローチを継続し、業務改善に生かしていく所存です。

データ・アナリティクス入門

数字で解く最適ログイン戦略

視覚化はなぜ大事? 数字に集約し可視化することの重要性を改めて認識しました。代表値と分布に注目し、平均値や標準偏差の概念を意識することはもちろん、場合によっては単純平均ではなく適切な重みづけを行う必要があることも理解しました。 どうユーザー呼び込む? ログイン率向上のためには、プッシュ通知を活用したユーザー誘導施策が有効だと考えています。具体的には、アプリのログイン時間帯とユーザーの年代を比較し、どの時間帯にプッシュ通知を設定するのが適切かを検討していきたいと思います。 データは見えていますか? まずは、アナリティクスで必要なデータが可視化できているか、ログイン時間帯と紐づくユーザーの年代ごとのデータが抽出できるかを確認します。その上で、データの分散状況を把握し、最も効果が高いと思われる時間帯を優先して施策の検討を進める方針です。

クリティカルシンキング入門

伝えたい思いを整理する力を育む

伝え方はどう? 私は、主語と述語を正しく使えず、自分の考えを十分に相手に伝えられていないことに気づきました。説明の際には、思いついたことを整理せずに話していたため、相手には何を言っているのかわからない状態が多かったのだと思います。 誤解はなぜ起こる? 業務では、分析した内容や考えたことを相手に伝える役割を担ってきましたが、整理されていないまま情報を伝えていたため、「それはどういう意味?」と聞き返されることがしばしばありました。したがって、これからは伝えたい内容を整理し、順序立てて伝えることを意識していきます。 報告の極意は? 報告や伝達を行う際には、まず伝える内容を書き出し、整理することが重要です。伝えたい内容のゴールが何か、そのゴールにどのような要素が必要かをきちんと整理し、相手にとってわかりやすく伝える方法を心掛けていきます。

「行う」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right