戦略思考入門

業務を捨てて本質に集中する方法

不要な業務をどう選定する? 本質的な業務に注力するためには、不要な業務を選定することが大切です。これには、「対応しない」「あとで対応する」「外部移管をする」といった選択肢があります。業務を捨てる判断を行う際の重要な判断軸として、「利益が出るか」「現場でうまく運用できるか」「会社の方針に合っているか」「法令やルールを遵守しているか」「公平性は担保されているか」などが考えられます。業務の目的や状況によってこれらの判断軸は変化するため、柔軟に対応することが求められます。 優先順位の低い業務は? 来期の部署の年間計画を策定する中で、財務の観点や会社の方針に基づいて優先順位の低い取り組みについては捨てるよう、上司に提案していく方針です。また、取引先に提案を依頼する際には、私たちの要望の中での優先順位を明確に伝えます。私が提案を行う時も、相手が本質的に何を求めているのかを理解するよう努めます。業務の中では、過剰な報告・連絡・相談の廃止や、会議用資料の作り込みすぎを避けるといった細かな改善も進めます。 判断軸の統一はなぜ重要? 捨てる要素に関する判断軸は、チーム内での認識を統一しておくことで意思決定がスムーズになると感じています。そのためには、上司と相談しながら捨てる業務の意識や判断軸の統一を図っていきたいと思います。上司に納得してもらうためには、根拠が必要となるので、数値化可能な部分はしっかり準備して提案するよう努めます。

クリティカルシンキング入門

イシュー特定で業務効率が劇的に向上

基礎知識の学びと課題発見は? ここまでに基礎知識やデータの読み解き、思考方法を学びました。課題としてイシューを特定するためには、問いから始めることが重要だと認識しましたが、まだ経験から来る判断をしているとも感じました。これを改善するために、常に意識し振り返りを行うことで、習慣化を目指します。 目的とゴールの意識が業務を変える? まず、イシューを特定し、目的とゴールを意識することが重要です。具体的には以下の点で活用範囲があります。 1. **業務の設計** - 目的とゴール、そしてあるべき姿を常に意識します。問いから始めることで、すぐに要点だけに意識を向けるのではなく、全体を俯瞰して考えることが大切です。 2. **人的なミス** - 仕組みや設計に問題がないのか、そもそも対策が必要かなど、広い視野で本質的な原因を考えるようにします。 3. **会議** - 何を決定する会議かを明確にし、イシューが何であるか、本質と内容がずれていないかを意識し続けます。 4. **資料作成** - イシューが何か、無駄な項目がないかを意識し、前提→結論→具体例がぶれていないかを確認しながら作成します。相手にとってのイシューや疑問をくみ取れる内容にすることが求められます。 問いから始めると否定的に捉えられる可能性もありますので、伝え方や日々の信頼残高を貯める意識を持ち続けることが重要です。

リーダーシップ・キャリアビジョン入門

実践で磨くリーダーの振り返り術

モチベーションをどう高める? メンバーのモチベーションを高め、成果を引き出すためには、リーダーとして①尊重する、②目標設定する、③フィードバックを行う、④信頼性を高めるというステップを意識することが大切だと感じました。ひとりひとりが何を重視しているかが異なるため、マズローの欲求5段階説やDマクレガーのX理論・Y理論、ハースバーグの動機づけ・衛生理論といったフレームワークを活用して、メンバーの特性に合わせた対応を徹底する必要性を実感しました。 振り返りの意義は何? また、振り返りとフィードバックの重要性について学んだことは、リーダーシップの実践にとって大変参考になりました。具体的には、結果に対する共感や、メンバー自身が言語化して振り返る機会を設けること、事実に基づいた具体的なフィードバックを行うことが挙げられます。改善点に関しては個人の責任にとどめず、組織全体の課題として捉え、今後の行動に繋げる姿勢を持つことが求められます。こうした取り組みを通じ、実行と結果の振り返りに責任を持つリーダーとして、前向きな姿勢を伝えていきたいと考えています。 組織体制はどう強化? さらに、今回学んだ内容を活かし、特に進捗に遅れが見られるメンバーを中心に、個々に合ったフィードバックを実施することに注力します。今後は、組織全体の振り返りも併せて行い、上司との連携を強化することで、次年度に向けた組織体制の強化にも取り組んでいく所存です。

データ・アナリティクス入門

さまざまな視点で問題解決を探る魅力

分析に必要な切り口とは? 分析を行う際には、さまざまな切り口を持つことが重要です。性別や年代といった属性に加えて、契約内容なども分析に取り入れることで、問題解決の糸口が見つかる可能性が高まります。物事を分析する際には、MECE(Mutually Exclusive and Collectively Exhaustive)の原則に従い、要素が重複したり欠けたりしていないか確認することが必要です。また、ロジックツリーを用いて、物事を分解して考えることで効果的な分析が可能になります。 問題解決に向けた新しい視点は? 分析において、それぞれの属性や切り口に新しい視点を加えることで、問題解決へと繋げることが求められています。バイアスを排除し、客観的な視点で物事を理解するためには、問題や課題を細分化して考えることが有効です。 契約者分析の具体例は? 具体例として、契約者の分析においては、契約時間帯や取引接点、折衝回数、前回の契約からの経過年数などの要素を考慮することが考えられます。また、ロジックツリーを活用し、契約率の改善を図ることができます。これにはリードの質を向上させるためのスコアリングや獲得チャネルの最適化のほか、営業プロセスとして初回アプローチの改善やフォローアップの最適化、営業担当者のスキル向上が含まれます。さらに、価値提案の強化として、パーソナライズされた提案の提供や他社との差別化も重要なポイントとなります。

データ・アナリティクス入門

データの見方で変わる分析の魅力

代表値と平均値の意味は? 「代表値」の取り方によって、仮説そのものが変わるため、スタート時点ではデータが正しく取得されているか確認が必要です。また、「平均値」は何を表すために使用するのかを確認する必要があり、すべての現象に平均値が適切であるわけではありません。代表値が正しく算出されているかどうかは、確認できれば行うべきです。例えば、前月や前年同月と比較して、結果が適正範囲であるかどうかを確認することが有効です。 標準偏差の目的は何? 「標準偏差」については、業務で適用するケースがほとんどなく、代表値同士を比較して分析する機会が少なかったと感じています。しかし、標準偏差を確認することで、実際のばらつき具合を把握できる場合があります。 データ推移をどう捉える? また、数字だけの表が緑・赤・黄に色分けされているなど、見た目でわかりやすくしていますが、これが単月でしか使用されていない現状があります。数ヶ月ごとのデータ推移を比較し、グラフ化することで、情報をより深く読み取ることが可能になります。 新たな可視化方法は? 可視化においては、円グラフやヒストグラムを多用していますが、それ以外の手法を取り入れることが少ないと気付きました。他の表現方法を取り入れ、第三者に訴える視覚的なグラフを作ることを試みたいと思います。むしろ、意図的に不適切なグラフも作成してみて、それがどのように不適切に見えるかを学ぶことも重要です。

クリティカルシンキング入門

クリティカルシンキングで未来を切り開く

クリティカル思考は何? 講師によれば、クリティカルシンキングとは「問い」と「答え」であるとのことでした。また、他の受講生がコメントしたように、クリティカルシンキングはロジックツリーやMECEといった技術にとどまらず、「それで良いのか」と常に自己批判のマインドを持つことが重要だと分かりました。この2つを知るだけでも、受講した意味があったと感じています。 イシューの本質は? これまでも「なぜ」を繰り返すことや、他人の考えをすぐに取捨選択しないよう意識してきましたが、今後はもっとイシューを意識して考えていきたいと思います。また、作成するグラフやデータの切り口についても、欲しい結果ありきになっていることに気づいたので、様々な角度からシミュレーションを行うように心がけたいです。 全体をどう捉える? 行動を起こす前には、前提や全体を俯瞰して捉えることが重要です。そして、着地点を想像せずに的確な「問い」を設定し、ピラミッドストラクチャー、ロジックツリー、MECE、多方面からのグラフ化などを活用しながら、常にイシューを意識して一貫性を保ちつつ目標に到達することを目指します。 伝え方はどうする? また、相手に伝える際には、どのように伝えるかを考え、効果的なコミュニケーションを図ることで、チームとして成果を生み出したいと考えています。このプロセスを常に行うことで、無意識に実践できるように習得したいです。

クリティカルシンキング入門

データ分析で新発見!視点の転換術

売上分析の課題とは? 商品に関する売上分析を行う際、数値データを基に顧客層を分類して分析を進めることがあります。しかし、その分類方法に悩むことが少なくありません。分類後、もし特に傾向が見られなかった場合、それは新たな発見と受け止め、他の視点から見直す機会とすることで、時間を有効に使いたいと思います。 データを効果的に分解するには? 売上データの分解に関しては、講義で学んだように「年代」という一つの軸でも様々な区分が可能です。10歳刻み、または18歳以下、22歳以下、39歳以下など、異なるグルーピングによって見えてくるデータが変わります。分解時には、他にも分け方の可能性がないかを考えていくことが重要です。 結論を急がないための思考法 データからの考察を行う際、結果が見えた時点で急いで結論を出しがちです。しかし、その前に「本当にその結論で良いのか?」と疑問を持ち、再度見直す時間を設けるように心掛けたいです。 視覚的分析がもたらす効果とは? まずは視覚的にデータを確認することが肝心です。数値を頭の中だけで捉えるのではなく、見やすい表やグラフを作成し、比率や色を効果的に使うことで、直感的に理解できるよう努めます。そして、分析結果を迅速に分解するために、どのように分類するかということに特別な時間をかけるのではなく、分解した後で何が見えてきたのか、次にどう行動するべきかという考察に時間を注力したいと思います。

データ・アナリティクス入門

数値が導く学びの冒険

数字はどう見える? まず、数字の見方について考えると、仮説を立てた上でデータを収集し、その後の分析で仮説の検証を行うという流れが基本だと感じました。AIを使って情報を収集する場合でも、自分なりの考えを持ち、AIから得られた情報と自分の意見を照らし合わせることが大切です。もしも自分の予想と結果が異なった場合、その違いがどこから生じたのかを考えることで、新たな学びのヒントが得られると実感しています。 代表値はどう見る? 次に、データの見方としては、代表値に注目しました。単純平均、加重平均、幾何平均、中央値など、データの性質や目的に応じて使い分けることが必要です。また、散らばりを示す指標としては標準偏差があり、これらの数値をグラフ化することで、直感的に状況を把握できる点も魅力的だと思いました。 業務の数値活用は? 普段の業務では、商品の売上や原価、コストダウンの検討などで、いろいろな平均値を算出することが新たな発見につながるのではないかと感じています。そして、その結果を他者に説明する際に、グラフを活用することで、理解を深め、合意形成をスムーズに進めることができると確信しています。 AIで何を発見? 日常の業務の中で、実際に数値をAIに入力して計算やグラフ化を試みることで、これまで気づかなかった事実や見逃していた視点を発見できるのではないかという期待があります。来週には、何かの案件で試してみるつもりです。

マーケティング入門

実践で磨く総合ビジネス力

マクロ視点の大切さは? ミクロ視点だけでなく、マクロの状況を踏まえた考え方が大切だと改めて感じました。顧客視点に加えて、世の中の情勢や動向を理解することで、より総合的なビジネス力が身につくと実感しています。 リーダーに必要な本質は? また、ビジネスリーダーに求められる能力として、経営戦略やマーケティングに基づく戦略立案、人材マネジメントや組織行動とリーダーシップを核とするチーム作り、そしてファイナンスやアカウンティングを含めた投資検討という三つの分野があることを学びました。 6週間講座の成果は? 6週間にわたる講座では、動画視聴、実践演習、振り返りといった学習サイクルを体験しました。特に実践演習は、単に動画を見るだけでは得られない理解を深めるために非常に重要であり、苦労しながらも多くのことを学び取ることができました。 自社強みの発見は? さらに、今回の講座を通じて、ポジショニングや差別化を考える際には、自社の強みや弱みを十分に理解することが不可欠であると気づきました。これまでプロジェクト運営に注力してきたため、顧客に提案する際には自社と同業他社との違いをしっかり把握し、独自に提供できるサービスを検討していく必要があると感じました。 市場調査の活用法は? 市場調査やリサーチを行う際には、ニュースや各種サイトといった情報源をどのように活用しているのか、今後も引き続き学んでいきたいと思います。

データ・アナリティクス入門

数字が繋ぐ学びのストーリー

分析の目的は? 分析について学んだ点としては、まず分析の目的を明確にすることの大切さを実感しました。分析は単なる数字の羅列ではなく、比較を通して意味を見出し、意思決定に役立つ結論を導き出すことが求められます。また、手元にないデータからも推測を行うことで、新たな洞察が得られる場合があること(例として、戦闘機の事例)が印象に残りました。 仕事にどう生かす? この学びを仕事に活かすため、分析に取り組む前には「なぜ分析を行うのか(Why)」、「その目的を達成するために何を分析すべきか(What)」、「どのように比較検討するのか(How)」を明確に文書化することが必要だと考えます。例えば、進行中の消費者アンケート調査では、調査の目的、分析対象、比較対象と方法を整理することが求められます。また、広告効果測定においては、分析対象が広告以外の条件とどのように整合性をもって比較できるか検討することも重要です。 報告はどう伝える? 報告時には、まずデータそのものの事実を示し、次にそこから読み取れる解釈を伝え、最終的に結論としてまとめるという流れが効果的です。一方で、営業提案用の資料作成の場面では、自社に有利な解釈ができるようデータの切り取り方に工夫が求められる状況もあります。私は分析担当として、あくまで客観的でフラットな視点からデータを伝えることを心がけているため、その点について皆さまのご意見を頂ければと思います。

データ・アナリティクス入門

3Cと4Pで学ぶ仮説の魔法

仮説構築はどう効率化? 仮説を立てる際、ゼロからすべてを考えると時間がかかるため、よく使われるビジネスフレームワークを活用することで、より効率的に仮説を構築できます。 3Cの有用性は? 代表的なフレームワークのひとつに「3C」があります。これは事業戦略を分析する際に、顧客(Customer:市場・顧客)、競合(Competitor:競合)、自社(Company:自社)の観点から考える手法です。具体的には、顧客が誰か、市場が今後伸びるのか縮小するのか、どの競合が存在し、どれほど強いのか、そして自社のサービスが顧客のニーズを満たしているかといった点を検討します。 4Pのメリットは? もうひとつは「4P」で、自社のサービスをさらに詳しく分析するためのフレームワークです。Product(製品)、Price(価格)、Place(場所)、Promotion(プロモーション)という観点から、製品やサービスの質、適正な価格設定、提供方法や手段、そして効果的な販売促進の方法などを具体的に検証します。 導入評価の視点は? また、医薬品の導入評価時において、アセットの事業性評価を行う際は、3Cのフレームワークを意識することが重要です。ターゲットとなる患者層(Customer)、競合他社(Competitor)、自社の立ち位置(Company)という視点から評価を進めることで、より的確な判断が可能となります。

データ・アナリティクス入門

比較思考で紐解く学びの極意

分析の意味は何? 「分析は比較なり」という言葉は、普段何気なく耳にするものですが、今回改めてその意味を強く感じました。データ分析において、必要な情報を集めることに注力し過ぎるあまり、単にデータを並べただけで満足してしまい、見る人によっては分析結果の捉え方に差が生じる場面があったと実感しています。動画学習では、適切な比較対象を選ぶことの重要性にも触れ、データを揃える行為は無駄ではないものの、分析の目的や見せ方を意識しなければ本来の意味での分析にならないということを認識しました。 物流の選定はどう見直す? この考え方は、物流部門における利用業者の選定や見直しにも応用できると感じます。たとえば、ある条件がある場合とない場合で、一律運賃が設定される荷主とそうでない荷主の運賃総額を比較する手法が考えられます。 大手と中小の差は? また、単純に大手業者と中小業者を料金面で比較するのではなく、企業の規模や対応する配送範囲が同様である業者同士で運賃を比較することが、より適切な分析につながると理解しました。 比較対象の妥当性は? さらに、自分が揃えたデータが本当に比較に適したものかどうか、常に振り返りを行うことが大切です。普段利用している輸送業者に注目し、過去の実績が明確な業者だけを比較対象にしている現状を見直し、新たな業者や新しい地区の業者も検討することで、より多角的な視点を持つことができると感じました。
AIコーチング導線バナー

「行う」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right