データ・アナリティクス入門

数字が繋ぐ学びのストーリー

分析の目的は? 分析について学んだ点としては、まず分析の目的を明確にすることの大切さを実感しました。分析は単なる数字の羅列ではなく、比較を通して意味を見出し、意思決定に役立つ結論を導き出すことが求められます。また、手元にないデータからも推測を行うことで、新たな洞察が得られる場合があること(例として、戦闘機の事例)が印象に残りました。 仕事にどう生かす? この学びを仕事に活かすため、分析に取り組む前には「なぜ分析を行うのか(Why)」、「その目的を達成するために何を分析すべきか(What)」、「どのように比較検討するのか(How)」を明確に文書化することが必要だと考えます。例えば、進行中の消費者アンケート調査では、調査の目的、分析対象、比較対象と方法を整理することが求められます。また、広告効果測定においては、分析対象が広告以外の条件とどのように整合性をもって比較できるか検討することも重要です。 報告はどう伝える? 報告時には、まずデータそのものの事実を示し、次にそこから読み取れる解釈を伝え、最終的に結論としてまとめるという流れが効果的です。一方で、営業提案用の資料作成の場面では、自社に有利な解釈ができるようデータの切り取り方に工夫が求められる状況もあります。私は分析担当として、あくまで客観的でフラットな視点からデータを伝えることを心がけているため、その点について皆さまのご意見を頂ければと思います。

データ・アナリティクス入門

視野を広げる学び方の発見

学びの振り返りはどのように? これまでを振り返り、学びを得たことを自分の言葉で再度まとめることができる場があり、復習に繋がりました。また、リアルタイムでの講義には参加できなかったものの、自分一人で考えるだけでは視野が狭くなる可能性があるため、参加できなかったことが悔やまれます。 分析のストーリーが重要? その中でも特に印象的だったのは、スライドで示された「やみくもに分析しない。ストーリーが大事!」という点です。傾向をつかみ、特に見るべき箇所を明らかにし、網羅的にデータを収集して分析することの重要性が強調されていました。これにより、言語化・教訓化・自分化が進められると感じました。 自己研鑽と業務改善のステップは? 学習方法については、自身の癖を認識しているため、現在バイアスに押し負けないように自己研鑽に励みたいと思います。特に、問題解決が業務の中心であるため、そのステップに基づいて業務を進めたいと考えています。また、過去の経験則で決め付けることが多い内部問題の洗い出しと改善にもつなげていきたいです。 業務指標の整理はどうする? さらに、毎月提供される業務指標が様式も保管場所もその時期もまばらであり、単体に存在している現状があります。これを単体で取り扱うのではなく、日々起きる問題に備えてまとめておくべきだと感じました。目的に合わせて必要なデータをいつでも引き出せるように整備しておきたいと思います。

クリティカルシンキング入門

グラフ一つで印象激変!

グラフの印象は変わる? 今回学んだことは、グラフの見せ方ひとつで印象が大きく変わるという点です。印象が変わることで、情報がより伝わりやすくなると実感しました。 メッセージはどう伝わる? そのために、まずはメッセージとグラフをうまく関連付けることが重要です。スライド全体では、左から右、あるいは上から下へと自然な流れを意識し、情報を順序立てて配置する必要があります。メッセージでは、レイアウトの調和やフォントの色使いに工夫を凝らし、グラフでは種類の選定やタイトル、軸の説明と補足の工夫を通じ、より伝わりやすい資料作りが可能になると感じました。 資料作成は丁寧かな? また、スライド作成は常に丁寧に仕上げることが求められます。自分が調べた情報や伝えたい内容を、受け手が「なんだこれは?」と感じないまでしっかりと整理し、分かりやすい形で提示することが大切です。社内の会議資料やチーム内の協議、他部署とのやり取りにおいても、どんな相手に対しても丁寧さを心掛ける必要があると改めて実感しました。 作業効率はどう実現? 一つ一つの作業を丁寧にこなすことで、正確な情報伝達が可能となり、結果として会議や相談の時間短縮にもつながると考えます。読み手が理解しやすい構成、メッセージとグラフの関連性、そして色やアイコンなどの視覚要素にも配慮することで、経験を積むほどにより効率的に質の高い資料を作り上げることができるでしょう。

データ・アナリティクス入門

目的と丁寧さで切り拓く成長の一歩

目的は本当に明確? 全体の学習を振り返る中で、まず「目的を明確にする」ことの大切さを実感しました。分析の目的を最初にしっかりと考えることで、効率的に検討を進め、目標に向かう道筋がはっきりしていくと感じます。 解決策はどう整理? 次に、「問題解決のステップに沿って丁寧に考える」ことが重要であると再認識しました。what、where、why、howといった視点を順を追って整理することで、論理的に整った考え方ができ、正しい解決策にたどり着けると感じました。 分析はどう区切る? また、分析とは「分けて比較する」作業であるという点が強く印象に残りました。難しいものという意識を捨て、シンプルにとらえることで、より具体的に物事を捉えやすくなったと感じています。 目的確認で効率化? さらに、頼まれた仕事や指示された業務においても、ただ漠然と取り組むのではなく、その目的をしっかりと確認することで、仮説が立てやすくなり、効率的かつ生産性の高い仕事ができると実感しました。自ら考え抜く姿勢が、意欲的な取り組みにつながるのだと思います。 学びはどう定着する? この講義で得た学びをノートにまとめ、復習を重ねることで自然な形で分析に向き合えるよう、自分の中にしっかりと定着させていきます。最初に浮かんだ解決策にすぐ飛びつくのではなく、常に冷静に考え、丁寧な検討を続けていこうと心に誓いました。

クリティカルシンキング入門

データで読み解く商談の真実

分析目的はどう決める? 数字の分け方や分解方法で、同じデータからまったく異なる分析結果が得られることを学びました。データ分析に取り組む際は、まず分析の目的を明確にし、その後で全体の定義(たとえば分析対象の期間など)を設定することが大切だと感じました。また、グラフ化することで視覚的に理解しやすくなる点も印象的でした。たとえ何も見えなくても、それ自体が正しい結果であると捉え、試行を続けることの重要性を再認識しました。 営業分析のポイントは? さらに、営業分析に応用できると考えた事例もありました。ここ半年間の商談を以下の要素に分解することで、自身の強みと弱み、そしてボトルネックの特定に役立てられるのではないかと思いました。具体的には、①顧客属性(業種、規模、地域)でどの顧客に強いか、または弱いかを把握し、②接点属性(チャネル、紹介元)から成果に結びつきやすいリードを見極める。そして、③商談構造(課題の種類、緊急度)で勝ちやすい案件の特徴を探り、④プロセス分析(商談フェーズ、失注理由)でどの段階に課題があるかを明確にするという点です。 MECE分析はどう考える? また、MECE分析に関しては、全体をどのように部分に分けるか、事象をどの変数で分解するか、そして全体プロセスの中でどこに問題が潜んでいるのかを考察することに難しさを感じています。皆さんはどのようにアプローチされているのか、大変興味があります。

データ・アナリティクス入門

学びとデータのワクワク発見

データ集約はどう行う? 今週は、データの見方を学びました。まず、データを数値に集約する方法として、代表値と散らばりの考え方を理解しました。代表値には平均、荷重平均、幾何平均、中央値などがあり、よく使われる平均値は外れ値に弱いことから、場合によっては中央値が用いられることもあると知りました。また、状況に応じて数値に重みを加える荷重平均や、売上の変化率などに使われる幾何平均がある点も印象的でした。 標準偏差の意味は? 次に、データの散らばりを示す標準偏差について学びました。標準偏差は、平均値からのばらつきを表し、その値が大きいとデータが広く散らばり、小さいと平均値近くに集まっていることを意味します。 分析方法をどう考える? さらに、集約されたデータを分析する際のアプローチについても考えました。一つは、特徴的な箇所に着目する方法、もう一つはデータ間の比較を通じて差異を見る方法です。いずれの方法でも、グラフを見る前に仮説を立て、そのギャップについて深掘りすることが、良い分析につながると感じました。 全体把握の重要性は? 最後に、仕事上でデータを扱う際、自分の仮説の確認だけに偏らず、まずは代表値やばらつきなどの基本的な数値を俯瞰し、対象のデータ群全体を把握することの大切さを再認識しました。その上で、加工されたデータを見ることで、より客観的かつストーリーとしてデータを理解できると考えています。

クリティカルシンキング入門

「自分の思考の限界を突破する方法」

バイアスを超える思考法とは? 自分の思考にはバイアスがかかっていることは理解していたつもりでしたが、ワークを通じて、想像以上に自分の思考を制約していることに気づかされました。そして、クリティカルシンキングやロジカルシンキングに長けている人々が、思考を制約していないか、自分の考えは偏っていないかを常に意識して問いかけているという話は非常に印象的で刺激的でした。これからは、常に自分に問いかけることを意識し、もう一人の自分を育てていきたいと思います。 新規サービス企画での視点は? 現在、新規サービスの企画・提案書の作成を求められています。そのため、企画の段階から「3つの視点」を意識して提案内容を整理しようと思っています。また、ミーティングの際には、自身が発言する際に限らず「目的は何か」を常に意識しながら参加することを心がけます。その上で、アウトプットをして他者からフィードバックをもらう機会を積極的に増やしていきたいと思います。 ロジックツリーの活用方法 企画・提案書の作成にはロジックツリーを活用し、全体を部分の集合に分解しながら思考を整理します。ミーティング以外の場面でも、日ごろから他者と意見交換をする場や自身の考えをアウトプットして意見をもらう機会を意識的に増やしていきます。そして、すぐに考え出すのではなく、一歩踏みとどまって自分の思考が偏っていないか振り返ることを繰り返し習慣化していきます。

リーダーシップ・キャリアビジョン入門

エンパワメントで共に成長するリーダーシップ

エンパワメントの準備は? エンパワメントを行う際には、自分に余裕がある状態で行うべきだという考えが非常に印象に残りました。自分自身が余裕を持つためには、エンパワメントのための準備が必要だと感じました。そして、期待するゴールの設定やその意味、相手の業務理解度を把握するための対話、仕事を任せる際の意義を丁寧に伝えることの重要性も整理できました。一方で、相手の情緒的な面を考慮する必要性については深く考えたことがなかったため、目標設定時の相手の気持ちを引き出すことの重要性を再認識しました。 部下への伝え方は? 部署の下期目標を達成するために、部下に業務の目的や目標を説明する際にはエンパワメントのスキルを活用したいと考えています。部下が自律的に行動できるよう、スキル向上のために目標に対する理解度やできること、不足していることを共有し、特に不足している点を支援して彼らの成長を促したいと思います。 指示と対話は? まずは、相手を知ることに取り組んでいきたいです。相手の経験や時間的な余裕、業務内容に加え、感情面も考慮していきます。次に、業務を依頼する際には目指す姿を共有し、期待する達成目標を具体的に示すことで、相手の考えを引き出す対話を心掛けていきたいと考えています。これらを踏まえて、今後は指示命令型の業務依頼から、相手のやる気を引き出し、情緒面を理解しながらエンパワメントを実施していくことを目指します。

マーケティング入門

顧客の声で描く戦略の未来

顧客ニーズは何? 顧客視点の重要性を改めて実感しました。企業側の都合ではなく、実際に顧客が何に価値を感じるかを軸に戦略を描くことが成功につながると学びました。顧客の言葉だけでなく、行動や背景に目を向けることで、本当のニーズを把握できる点が印象的でした。 どう差別化する? また、ポジショニングと差別化の視点も非常に有意義でした。競合と同じ土俵で戦うのではなく、顧客が重視する評価軸をもとに独自の立ち位置を確立することが、真の競争優位に結びつくと感じました。自社が思う強みではなく、顧客から見た価値ある強みを追求する意識が大切だと実感しました。 体験設計はどう? さらに、顧客体験全体の設計についての学びも心に残りました。購入前から使用後までの全てのプロセスにおいて、ポジティブな体験をデザインすることがリピートや紹介に直結するという考え方は、今後の取り組みに大いに活かせると感じました。単に商品を売るのではなく、顧客の成功体験を提供するという視点が、現代のマーケティングにおいて重要であると再認識しました。 どう市場を拓く? 加えて、新規開拓、既存顧客の深耕、新商品の販促、店舗戦略、営業改善など、様々なビジネス領域でこれらの視点を活かす方法について学んだことは、実践面での大きな収穫でした。チャネルやターゲットに合わせた販促・プロモーションの工夫も、成果に直結するポイントとして印象に残りました。

データ・アナリティクス入門

幾何平均に出会った瞬間

代表値の選び方は? データの分布を把握する際、代表値の選び方は非常に重要です。平均値は外れ値の影響を受けやすいのに対し、中央値はその影響が少なく、より正確な中心傾向を示すことがわかりました。また、平均値には単純平均、加重平均、幾何平均の3種類があるという点も新たな発見でした。特に成長率の変化を評価する場合に利用される幾何平均という概念は、初めて聞いた言葉で印象に残りました。 散らばりはどう測る? 一方、データの散らばりを確認する方法として、数値で表す場合は標準偏差がよく用いられ、また、ヒストグラムなどの可視化手法が直感的な理解に役立つことが理解できました。 分析の視点は何? これまでのデータ分析では、単純平均と加重平均に頼る傾向がありましたが、今後は中央値やヒストグラムといった手法も積極的に活用し、データの特徴を多角的に捉えていく必要があると感じています。さらに、これまで分析の選択肢に含めてこなかった幾何平均にも意識的に取り組み、より正確な分析を目指したいと思います。 BIツールの使い方は? また、BIツールを活用して経営ダッシュボードを構築する際には、代表値と散らばりの両面からデータをビジュアルに表示できるよう工夫していく予定です。 幾何平均はいつ有効? 今後は、幾何平均がどのような場面で最も有効に働くのか、具体的な利用シーンについても更に知識を深めたいと考えています。

クリティカルシンキング入門

目に仕事させる分析術

グラフで何が見える? 数字や表をそのまま眺めるのではなく、グラフ化することで「目に仕事をさせる」という考え方が印象的でした。数字を様々な角度から検証し、視覚的に捉えることで、普段は気づきにくい点が浮かび上がると感じました。また、MECEという概念についても、モレなくダブりなく分析するための具体的な手法(層別分解、変数分解、事象のプロセスでの分解)があることを学び、今後の分析において意識して活用していきたいと思いました。 現状把握のコツは? 私は全社の事務部門において、業務プロセス上の課題を明確にし、改善策を提言・実行する役割を担っています。各種データから課題や問題点を抽出する際、今回学んだ分析手法を取り入れることで、より正確な状況把握ができると期待しています。また、メンバーからの意見をそのまま受け入れるのではなく、他の視点も取り入れながらクリティカル・シンキングを活かして問題点を見極める重要性を再認識しました。 多角的な視点は? 日々の報告や相談を受ける際は、数字については多角的な分析ができているか、課題の洗い出しについてはMECEの観点で漏れがないかをひとつひとつ意識しています。必要に応じて分析の切り口を増やし、グラフ化するなど、手を動かしながら客観的に情報を整理しています。説明を行う際にも、これらの視点が十分に盛り込まれているかを確認し、分かりやすい内容を提供できるよう努めています。

デザイン思考入門

受講生が感じたデザインの魅力

デザイン思考の基礎は? 6週間にわたり受講したデザイン思考の入門講座では、これまで漠然としていた基礎体系が明確になり、その各ステップや方法論に触れることができました。従来からあるKJ法も実は発想の一手法であり、シンプルながら発想の視点を巧みに整理するSCAMPER法の学びも非常に興味深かったです。 従来手法との違いは? ただ、従来の問題解決手法との違いや、どこがどの程度斬新であるのか、またどのような問題に効果的か逆にどのシチュエーションで難しいのかといった点については、入門編だけでは十分に納得できず、もっと深く知りたいと感じました。 感覚での発見は? バックパックに関する課題を通じて、人間の感情や感覚を軸とした問題発見のアプローチを実感できた点が印象的でした。 組織への応用は? また、企業や組織というマクロな課題に対しては、日常の業務にそのまま適用するのは難しいと感じました。しかし、対クライアントやチームとの対話など、個々のコミュニケーションの中で共感や創造力が発揮される場面では、大きな可能性を感じます。 学びをどう活かす? 今回学んだ内容を、同僚や後輩にも伝え、彼らの反応を見ながら自分なりに講義の内容を説明してみたいと思います。実践を通してデザイン思考がどのような場面でどのような価値を生むのかを探り、理解を深めていくことが今後の課題だと感じました。

「印象」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right