デザイン思考入門

ユーザー視点で描く未来

デザイン思考はどう? 初回の授業を受けて、デザイン思考に対する自分の理解がまだ浅く、視点の解像度も低いことを実感しました。グループディスカッションでは、マーケティング(特にマーケットイン)のアプローチとの違いについて意見が飛び交い、私自身もその違いがはっきりと捉えられていない印象を受けました。人間中心の考え方や共感の概念についても、マーケティングと比較すると特有のものか疑問が残りました。プロトタイピングによる試行錯誤のプロセスが、単にそれだけの違いなのか、他に意義があるのかと考えると、もやもやした気持ちが募るばかりです。 学びの解像度はどう? 今後の6週間で、どこまでこの解像度を高められるかに注目しながら、学びを積み重ねていきたいと思います。現時点では具体的なイメージはまだ固まっていませんが、まずはユーザー中心の視点で物事を考えることを意識していく所存です。サービスを生み出す立場として、ユーザーが本当に必要としているものや、ユーザー像を理解する努力が必要だと痛感しました。提供者側のエゴに陥らないよう、常にユーザーの視点を大事にしていきたいです。 顧客調査は何故? また、顧客を深く理解するためには、まず徹底した調査から始めるのが自然であり、納得のいくアプローチだと感じました。この考え方を、今後の全ての業務においてしっかりと実践していくつもりです。

アカウンティング入門

営業利益を掴むための新視点

損益計算書で何を学んだ? 損益計算書(P/L)を通じて、営業利益、経常利益、純利益の三つの営業利益についての理解を深めることができました。特に、本業での儲けが前年や前月と比較してどう変化しているかを数字で考察する方法を学びました。自社でも営業利益と経常利益が異なる結果になることがありますが、その際にどこに注目して数値を見るべきかを把握しました。特に販管費が間接費用の多くを占めるため、そこに注目していきたいと思います。 対予算で何を分析する? 自社の毎月の業績報告では損益計算書の内容を自分なりに分析し、理解を深めるよう努めています。特に、毎月の対予算の観点から実績報告が行われるため、本業の稼ぐ力を示す営業利益と、企業全体の利益を示す経常利益については内容を精査するよう心がけています。自社は製造業であるため、売上高から工場損益と事業損益を差し引いて営業損益を算出するので、具体的な要素の変化に注視し確認することが重要です。 営業利益に何が影響する? また、毎月の業績報告において、自分が担当している業務のコストが販管費に組み込まれているため、その数値が営業利益にどのように影響するかを確認するようにしています。そして、予算に計上されている売上高や売上総利益が目標を達成しているかにも注目し、損益計算書を順番に分析して状況を把握するよう心がけています。

アカウンティング入門

自分の会社をもっと良くするために!B/SとP/Lの完全攻略

B/SとP/Lの関係性は? B/Sの構成について理解が深まりました。特に、P/Lとの関係性や会社の健康状態を把握する上で、単なる構成の学習ではなく、実質的な理解が得られたことが大きいです。現在、自社の内部留保が多くB/Sが安定している状況を踏まえ、どのように攻めていくかが課題となっていると感じました。 他社との比較で見つかること まず、当社のB/Sを分析し、給与のベアに充てる財源を確認しました。この上で予算の計算を行い、費用をどこまでかけられるかを明確にする作業を進めました。他社のB/Sも確認し、人件費の割合を算出することで、同様の水準まで引き上げる計画を立てました。これらの分析をもとに、今期中に役員提案を行う予定です。 財務状況をどう強化する? また、自社および他社のB/S・P/Lを読み解くことを進めています。同業他社のB/S・P/Lも参考にし、自社のアカウンティング上の強みと弱みを洗い出しました。さらに、経理部門とも相談し、人的資本経営に向けた予算算出を行っております。この一連の作業は、10月から行う予定の予算に反映させる計画です。 全体的なプロセスとしては、自社の財務状況をしっかりと把握し、他社との比較を行い、具体的な予算計画を立てることで強化しています。これにより、より明確な財務戦略と人件費の最適化を図ることが可能となりました。

データ・アナリティクス入門

目的明確!整理から始める本気の分析

比較はどんな意味? 「分析は比較」という考え方は、これまでさまざまな講座で耳にしていましたが、「比較する対象を見出す」という点については、あまり深く考えたことがありませんでした。そのため、今回の学びを通じて、まずは「どんな目的で分析を行うのか」や「ありたい姿」と現状のギャップを整理(言語化)することに意識を向け、分析のスタート地点としてしっかりと理解を深めたいと考えています。 現状整理はどう進む? 業務では、依頼主から提示される課題に対して、その課題=「在りたい姿」と「現状」の整理が不十分なまま、すぐにデータに取り掛かることが多くありました。そのためか、「こっちだったかも?」や「なんかズレてきている?」という不安にかられ、進めていた分析で手戻りが発生することも多々ありました。そこで、データに触れる前に、一度しっかりと整理してから進めるべきだと改めて感じています。 新規案件の見通しは? 今回、新規の案件にあたっては、以下の点について整理しながら進めていく予定です。まずは分析の目的を明確にし、ありたい姿を言語化します。次に、現状の把握と、現在手元にある指標の洗い出しを行い、ありたい姿とのギャップを埋めるために必要なデータを整理します。こうしたプロセスをメンバー間で共有し、認識を合わせながら進めることが、より効果的な分析につながると期待しています。

リーダーシップ・キャリアビジョン入門

自分を見つめるキャリアの再出発

キャリアの本質は何? キャリアアンカーとは、仕事を進める上で自分にとって最も大切な価値観を明らかにするもので、現状と理想の自分のギャップを認識するのに役立ちます。また、部下の働く意欲や考え方を把握する際にも有効です。一方、キャリアサバイバルは、今後の仕事や周囲の変化を踏まえ、必要なスキルや訓練、適任者像を考えることで、組織内での生存戦略を立案する考え方です。これらは、①仕事の棚卸し、②環境分析、③仕事の見直しというステップで進められます。 学びは足りていますか? 今回の学習だけでは、他者に説明できるレベルに達していないと感じました。そのため、まずは別の書籍などを通じてキャリアに関する知識を深め、自分自身のキャリアアンカーを改めて考察することにしました。その上で、職場でキャリア理論の紹介の場を設け、部下にも自身のキャリアアンカーを考えるよう促す提案を行い、各自がどのように成長し理想に近づけるかを共に考える雰囲気を作りたいと思います。 実践はどう進める? 具体的な取り組みは、まずキャリア理論に関する書籍を読み、自分のキャリアアンカーを整理することです。そして、職場でキャリアに関する理論を紹介する場を設け、部下に対して自身のキャリアアンカーを考えてもらうよう提案します。さらに、部下との個別面談の機会に、その考察内容をもとに意見交換を進める予定です。

データ・アナリティクス入門

数字が紡ぐ学びの軌跡

データ加工はどう整理する? データ加工においては、数値に集約して捉える、目で見て把握する、そして数式に集約するという3つの方法を基本としています。 分析はどう進む? 分析の際は、まず目的(問い)を設定し、仮説を立てたうえでデータ収集・検証を繰り返すプロセスが基本です。さらに、インパクト、ギャップ、トレンド、ばらつき、パターンの視点と、グラフ、数字、数式というアプローチを組み合わせることで、多角的に情報を捉えています。 数値管理はどう考える? 具体的な数値の扱いとしては、代表値に単純平均、加重平均、幾何平均、中央値を用い、散らばりは標準偏差で表現します。ただし、平均値は外れ値の影響を受けやすいことに注意が必要です。 セグメントはどう見る? また、キャンペーンメールのデータと顧客データを用いた分析では、どのセグメントにどのような傾向があるかを明確にし、それをもとに有意差が見込める仮説を立てる際に、プロセス・視点・アプローチの組み合わせが効果的であると感じました。 検証の深め方は? 以前は、キャンペーンメールと顧客データを分析する際、インパクト、ギャップ、トレンド、ばらつき、パターンといった視点に十分意識を向けていなかったため、今後はこれらの視点をしっかりと取り入れながら仮説を立て、より精度の高い検証を行っていきたいと考えています。

マーケティング入門

顧客の声が教えてくれた本質

学びの深さは何ですか? WEEK01からの学びを再確認するために、総合演習に臨む機会となり、これまでの知識や経験を振り返ることができた。動画学習を通して、他社のユニークな差別化事例から新たな視点を学び、非常に勉強になったと感じる。 顧客ニーズは見えてますか? 「顧客の声に敏感になる」という点も大切だと実感した。ただし、顧客の意見をそのまま拾って改善に結び付けるのではなく、その声の奥に隠れた本当のニーズを見極めることが必要だと感じた。 社内の本当の要望は? バックオフィス業務においては、社内メンバーが本当に求めているポイントを正確に理解し、彼らが抱えるペインポイントを明らかにすることが求められる。多くの場合、社内メンバーは過去の経験則や自身の専門性、価値を高める活動に偏りがちなため、彼らの価値向上に直結するアプローチを考えることが重要である。 伝え方の効果は十分ですか? また、最新の考え方や知識、スキルをそのまま伝えるのではなく、新たな機能や取り組みがどれだけ効果的で役立つかを、実例を交えながら説明する方法が求められる。社内アンケートで得られる「顧客の声」は、そのままではなく、一歩踏み込んで「顧客の心理」を理解することにつなげる必要がある。その上で、真に求められているスキルや知識を整理し、適切にアウトプットしていくことが重要だと考える。

データ・アナリティクス入門

誰もが知る役立つ顧客データ分析の秘訣

分析目的の共有は済んでいる? 分析においては、まず目的をステークホルダーと共有し、判断の基準となる適切な比較対象を設定することが重要です。その後、グラフを用いて直感的に分析結果を把握できるように表現することが求められます。さらに、データが名義尺度、順序尺度、間隔尺度、比例尺度のいずれに該当するかを確認し、適切に扱う必要があります。 顧客データは適切か? 顧客情報の分析を依頼されることはよくあります。この際には、集計の目的をしっかりと理解し、対象となるデータが本当に適切であるかを確認してから分析を行うように心がけています。特に、分析結果が事前の予測から外れることがあります。その原因を探ると、対象外の顧客が対象データに含まれているという事例が多く存在します。 データグルーピングの確認 分析を行う際には、まず分析の目的と分析対象データの中身を事前に確認し、目的に対してデータの対象が適切であるかどうかを確認します。特に、データのグルーピングを行う際には、そのグルーピングが正しいかどうかを作業中でも確認することが重要です。提供されたデータには、抽出条件が不明確であったり、対象外のデータが混じっていたりすることが多いため、グルーピングの条件についてはステークホルダー間で共通認識を持つ必要があります。これを怠ると、分析をやり直すことになる可能性があります。

データ・アナリティクス入門

ロジックツリーの本質と実務への応用

MECEの難しさと挑戦 MECEを意識しすぎるあまり、本質的なロジックツリーを作れていないことがあるのは、本当にその通りだと思いました。漏れなく整理するために「その他」を多用している自分を容易に想像でき、今回の講座内容は非常に自分事として受け止めることができました。 良質な示唆を得るには? MECEは重要ですが、あくまでフレームワークの一つであり、問題解決に繋がる良質な示唆を提供できる分け方が求められます。現状の自分の役割としては、営業戦略の策定と売上増加のための施策検討があり、常に課題解決に取り組む状況です。Week 01から学んでいる内容は、まさに今の業務に直結するものです。 定量的な分析を目指して WhatやWhereを置き去りにせず、現状の分析とありたい姿やあるべき姿をしっかり定義し、どこにギャップがあるのかを定量的に、そしてMECEに整理できるようにしたいです。前提となる「現状分析やありたい姿の定義」は、頭の中でわかった気で終わるのではなく、しっかりと言語化することを意識します。 フィードバックの活かし方 MECEのアプローチは、一人でアウトプットを出したうえで、同僚や上司からフィードバックをもらい、自分では気付けない「漏れやダブり」を見つけることが大切です。そのためのブラッシュアップを行い、練習を重ねていきたいと思います。

データ・アナリティクス入門

ナノ単科で開く知の扉

ライブ授業の意義は? ライブ授業では、これまで学んできた内容を復習しながら、分析のプロセスを再確認することができ、知識がよりしっかりと定着したと実感しました。 演習で何を再確認? 演習では、ストーリーを持って分析を進める方法や、仮説に対する検証方法、そして平均値だけでなくそのばらつきに着目する必要性について再確認できました。 グループの発見は? また、グループワークでは、他の受講生の多様な視点を通じて新たな気づきを得るとともに、自分自身の考えをさらに深めることができました。 学びを言葉にできますか? 改めて、学んだことを言語化し、自分事として捉えることが知識の定着に大変重要であると感じました。 経営分析の心得は? 会社の経営状況を分析する際は、自分なりの仮説を立て、ストーリーを意識しながら課題解決のステップを踏むことが必要だと再認識しました。 データ活用の極意は? また、データの活用においては、まずは既存のデータを基本とし、情報が不足する場合には自らデータを集めることを心がけ、アウトプットのイメージを持つことが大切だと学びました。 知識定着の秘訣は? 短期間で学んだ知識はすぐに忘れてしまいがちです。業務で実際に活用し、継続的にアウトプットするほか、書籍などでの学習を続けることで知識の定着を図りたいと思います。

クリティカルシンキング入門

数字の裏に隠れる小さな真実

数値分解の意義は? 数値を細かく分解・加工することで、見落としがちな示唆を得る可能性があります。また、数値はグラフ化することで、より分かりやすく伝えることができます。分析の際は、「誰が」「いつ」「どのように」という多角的な切り口を用意しておくと効果的です。 分解作業の狙いは? 今回のワークは、与えられた数値をどのように分解するかに焦点を当てました。アンケートの設計・配信・分析といったタスクにおいては、どの切り口でどのような分析を進めるか全体像を押さえつつ、選択肢を適切に分解しておかなければ、いくらデータを集めても活用できないリスクがあります。 仮説検証はどう? また、新しい発見がなくても、今回の分解作業で得られなかった知見を学びとして前向きに捉えることが大切です。単にアンケートを配信するのではなく、小さな仮説検証を重ねることで、より精度の高い内容にブラッシュアップしていくことが求められます。 生成AIの使い方は? まず、全体像を明確に定義した上で、生成AIを活用しながらアイデアを整理します。その後、専門知識を有する関係者と確認を行い、情報が重複せず整理されているかをレビューしていきます。 基本属性の整備は? さらに、顧客の基本属性については、共通の型として整備し、自分だけでなく部署全体で再利用できるように準備を進めています。

データ・アナリティクス入門

データ分析で見えた本当の価値とは

データ分析の目的を明確に データ分析は、目的を持たずに取り扱うと、ただの意味のない数字でしかありません。そのことを今回の学習で目の当たりにすることができました。データ分析を行うにあたっても、なぜその分析をするのかという背景が見えなければ、同じ数字でも全く違った見え方をしてしまいます。そこで重要なのは、何を目的として分析を行うのかを明確にすることです。目的意識を持ち、定量的にデータを取り扱うことの重要性を学びました。 データで組織をどう活性化? 施策推進について考えると、個々の受付完了指標から組織や部単位での比較まで、データの切り口は多岐にわたります。組織が正常に稼働しているか、個人については「自分は頑張れているか」を評価することができます。さらには、何をもっと伸ばし、何を改善すべきか、メンバーのモチベーションの維持・向上のためにデータを利用したいと考えています。 データの伝達手段は? データを出すタイミングについては、デイリーにするか毎月末にするかなど様々な選択肢があります。組織やプロジェクトチームが活性化するための指標として、データを積極的に活用していきたいと考えています。データの伝達手段もまた多様で、メールや対面、ミーティングなどがあります。伝えたい内容、そのボリュームや重要度に応じて手段を使い分け、効果的に展開していきたいと思います。
AIコーチング導線バナー

「本」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right