データ・アナリティクス入門

データ分析で未来を切り拓く!

初期の分析結果は? 物販店の2割削減商品の仮説では、以下のような視点で分析を行いました。まず、データの重心は平均によって決定し、前年同月との販売比較を行いました。また、客単価や平均購入数、近隣店舗との売り上げ比較、顧客のインバウンド需要が変動した理由として、為替レートや可処分所得の変化にも注目しました。これに加え、アンケート施策も取り入れることで、順序立てて考えられるようになりました。 未知領域はどう? 次に、分析がまだ行われていない未知の領域を探るため、仮説を立てる必要があります。KPI以外のデータも分析の対象とすることで、現状を打破することを目指しています。そのために、データ分析手法に行動経済学や神経経済学の視点を取り入れ、心理的なデータ選択を通じて新しいデータ取得方法を確立したいと思います。最終的には、消費者の満足度や不満足度の要因を数値化し、顧客視点を重視した満足度向上に努めたいと思います。また、大量のデータを扱うため、ビッグデータ解析にも挑戦する予定です。 実務活用の振り返りは? 行動計画としては、本研修で学んだデータ分析や問題解決、仮説思考を実務でも活用していきます。これらのスキルは、データ以外の業務にも応用できると確信しています。研修で実施したことと実務での分析結果を2ヵ月間比較し、自分なりにレビューを重ねて、どれだけ浸透したかを振り返ります。また、ストレッチ領域として、ビッグデータに触れ前処理に苦労すると思いますが、実際に手を動かして経験を積んでいくことから始めていきます。

データ・アナリティクス入門

仮説検証で切り拓く未来

プロセスはどう検証する? 問題の原因を明確にするためには、まずプロセスを分解して検証することが重要です。解決策として、複数の選択肢を洗い出し、しっかりとした根拠に基づいて絞り込む方法が有効だと感じます。 効果はどう比較? A/Bテストでは、施策の効果を比較しながら仮説検証を繰り返します。あらかじめ検証項目を明確に設定し、1要素ずつ検証することが大切です。 データで判断する? データに基づいた意思決定を行うことで、業務の効率化や成果の向上を目指します。日常の仕事の中で仮説を立て、適切なアプローチ方法を模索してきました。過去の経験では、業務過多のため情報共有が主にメールに頼っていた状況もあり、その際はA/Bツールを利用して、理解度や反応の良さといった観点から効果のある方法を試してみました。例えば、メールでの通知と社内共有ドライブへの保管を比較する取り組みが挙げられます。 学びをどう定着? Week5までに多くの分析手法を学びましたが、学んだ内容を自分のものにするためには、メモを振り返りながらフレームワークの活用やデータ加工、さらに比較する際にどのグラフを使用するのが最適かを検討することが必要だと感じています。まずは実践を通じて知識を定着させ、現代ではAIの助けを借りながら調査の時間や手間を省いていきたいと考えています。 新分野はどう理解? また、動画学習を通じてWebマーケティングの指標など新しいエリアにも触れる機会があり、専門外の分野に対する理解がさらに深まったと実感しています。

クリティカルシンキング入門

データから見える新事業の可能性探し

データ分析はどう見直す? 得られたデータをそのまま解釈するのではなく、解析の手間を加えることで新たな理解を得ることが可能です。具体的には、割合や相対値を使ってデータを加工したり、数値をグラフや図に変えて視覚的に理解する方法が有効です。また、多くの視点や切り口でデータを分け、特徴的な傾向を探ることが重要です。この際、単に機械的に等間隔で分けるのではなく、その方法が本当に適切かどうかを常に疑う姿勢が求められます。いくつかの切り口で得られた結果を総合的に考慮する際は、誤った結論に至らないよう注意が必要です。 新規事業の見極め方は? 新規事業テーマを探索する過程では、どのテーマを選定すべきか全体像を把握するために、異なる切り口を試してみると良いでしょう。市場規模、成長率、顧客数、深刻度、性別、年齢、居住地などでデータを分けると、それぞれ異なる見方ができるかもしれません。そして、特徴的な傾向に対しては鵜呑みにせず、一度その信ぴょう性を確認する習慣を持つことが大切です。 情報収集は何を重視? 現在は情報収集やヒアリングの段階ですが、まずは分析に必要な情報をしっかり集めることが重要です。その後、複数の切り口でデータを分け、特徴的な傾向が浮かび上がるかを確認します。ヒアリングを行う時も、聞いた内容をそのまま受け取るのではなく、別の視点や視座で見た場合どうなるかを意識して理解を深めたいと考えています。また、課題がどのように存在しているのかを探る際、ヒアリングした内容を整理することで思考を整えたいと思っています。

データ・アナリティクス入門

課題解決スキルが劇的に向上する方法とは?

実践による学びの深まり Week1から継続して学び続けた内容を、ライブ授業の演習を通じて「一気通貫」で実施することができ、実践に活用するイメージが具体化しました。特に、仮説は一度立てたら終わりではなく、段階ごとに検証を通じてブラッシュアップしていくこと、また分析は比較であることを強く感じました。さらに、課題解決のプロセスは「What→Where→Why→How」という順序で考えることが重要であると学びました。このプロセスを進める中で、「データのビジュアル化」や「多様な切り口を考えること」の大切さも再認識しました。 課題解決の新たな視点とは? 自分の仕事は基本的に社内の「課題」を解決することが主な業務であり、この講座で学んだ内容はあらゆる場面で活用できると確信しました。これからは、課題解決のプロセス「What→Where→Why→How」を常に意識したいと思います。問題を解決する際には、直ちにデータ分析に取り掛かるのではなく、まず問題の定義から始め、問題点を特定して原因を分析するというプロセスを「事前」に頭の中で描くことが重要です。それにより、無駄な作業やヌケモレを防ぎ、「How」を忘れずに取り組むことが可能です。 事前準備の重要性について 具体的には、すぐに「データ分析」に取り掛からないことを意識的に行い、事前にそれぞれの課題解決プロセスで必要な「タスク」をイメージし、タイムラインを引いて計画を立てることが大切です。最初はしっかりと言語化し、プランをドキュメントに起こしておくことを心がけます。

データ・アナリティクス入門

因果の謎を解く学びの旅

因果と相関、どう考える? 相関関係と因果関係をセットで分析すると、その結果をもとに具体的な打ち手を考えやすくなります。具体的には、因果関係が成立するためには、「時間的順序が正しいこと」「相関関係が存在すること」「第三の要因が介在しないこと」という3つの条件を満たす必要があります。 時系列分析ってどう? また、過去のデータを活用して将来を予測する際には、時系列分析が非常に有効です。これに加えて、パレート分析やウォーターフォールチャートといった手法も、データの分析や可視化に役立ちます。 データ収集は大丈夫? データ収集にあたっては、対象が意味のあるものであるか、アンケートや口頭での聞き取りといった方法が適切に実施されているかを確認することが重要です。 契約商品の予測はどう? さらに、契約商品同士の相関関係や因果関係を把握することで、因果関係が認められる商品から、契約しやすい商品を予測して提案することが可能になります。特に、履歴などの時系列データを活用して、時系列データの4つの要素を理解し、使用するデータが何に該当するかを明確にした上で分析を行うことが求められます。 定義変更、何をチェック? 最後に、データの収集段階では、データの定義が変更されていないかどうかを確認した上で、顧客情報や各種商品の契約状況をリスト化し、各種商品間の相関係数を算出します。もし、相関が認められる商品同士に因果関係が存在する場合は、その因果構造に基づいた商品提案を検討することができます。

戦略思考入門

顧客視点での差別化戦略の鍵

顧客視点が重要なのはなぜ? 差別化戦略を考える際には、競合にばかり気を取られず、まず顧客の視点に立つことが重要だと感じます。差別化戦略において「選択と集中」は大切ですが、同時に複数の施策を実行できれば競争力はさらに高まります。環境は常に変化するため、自社の強みも定期的に見直すことが必要です。しかし、特定の強みで大規模な成功を収めた場合、方向転換は難しく、そうした課題に対応できていない企業も多いのではないでしょうか。 海外での専門性はどう活かす? ITベンダーとして国内外で仕事をしていると、国内では顧客の要望に柔軟に対応しますが、海外では専門性がないと認められません。実際には、複数のIT技術を扱うといっても、全てを深く学ぶことは難しく、場合によっては表面的な対応に終わってしまうことがあります。また、若手社員が勉強しても、次の仕事では別のことを任されると思うと、学ぶ意欲を維持しにくく、成長を実感できないことがあるようです。企業も専門性を重視し、業務を外注することで、社内で一貫した比較や統合を行うように変わってほしいですね。私は、そのような姿勢を企業に対し提案していきたいと考えています。 自身の専門性をどう高める? 幅広く知識を習得しつつ、自分が得意とするAIやデータ分析、ソフトウェア工学の分野では積極的に情報発信を行い、自身の専門性をアピールしています。例えば、2月9日にはAIエージェントについて、2月10日にはGraphRAGについての発表を予定しており、これを確実に実施したいと考えています。

戦略思考入門

フレームワークで強みを見つけよう!

共通視点をどう築く? フレームワークを使用することで、周囲の人々と共通の視点を持って協議することが容易になります。これまでにさまざまなフレームワークを試してみて、その使い方が概ね間違っていなかったことを確認できました。しかし、バリューチェーン分析についてはこれまで使ったことがなかったため、まずは自社のマーケティング組織において、自分の組織の強みや弱み、活動の機会や脅威を探りながら練習として取り組んでみたいと考えています。 分析で方向は定まる? 自社のマーケティング活動を主体とした際、それを取り巻く企業の状況や競合を3C分析で整理し、その後SWOT分析で機会と脅威を明確化したいと考えています。これにより、活動の方向性をはっきりさせ、上位者と目線を合わせることで異なる認識をなくし、メンバー全体に浸透させ、同じ方向で活動することを目指しています。しかし、他の組織にその活動を受け入れ、浸透させるには困難が伴います。それぞれの組織には独自の責務が存在するため、共感を得るのが難しいからです。この点については、時間をかけつつ継続的に取り組んでいきたいと考えています。 計画整理の進め方は? まずはいつまでに何をするかを時間軸に沿って洗い出す必要があります。これまでは、アクションを自分の頭の中で考える事が多く、文章に落とし込む機会が少なかったため、自分のスケジュールで進めていました。しかし、なぜその整理が必要なのか、またいつまでに必要なのかを考え、逆算思考で行動を着実に進めていくことが今後の改善点となります。

クリティカルシンキング入門

クリティカル思考で切り拓く未来

情報分析はどう進化? 論理的に情報を分析する方法を学び、情報を体系的に整理しながらその信憑性や関連性を評価する力が向上しました。これにより、正確な結論を導く基盤が整い、今後も業務の場面で役立てたいと考えています。 質問で何が深まる? また、適切な質問を行うことで、情報をさらに深掘りする力が養われました。さらに、複雑な問題に直面した際には、クリティカルシンキングを用いて効果的な解決策を見出すことができるようになりました。 日常業務の改善は? 今後の日常業務では、以下の点を意識して知識を活用していきます。まず、プロジェクトの進捗や市場動向を正確に把握するため、情報収集の際には信頼性や関連性を重視してデータを整理し、効果的な意思決定に繋げます。さらに、業務上の問題に対してはクリティカルシンキングで根本原因を特定し、創造的かつ実行可能な解決策を導入していきます。 具体的な取り組みとして、以下の習慣を実践していく予定です。 ・情報収集と分析の習慣化:   ✓ 日常業務で必要な情報を収集する際、信頼性や関連性を意識してデータを整理する   ✓ 分析した情報をもとに、定期的に報告書やプレゼンテーションを作成し、意思決定に役立てる ・フィードバックの活用と自己改善:   ✓ 定期的に上司や同僚からフィードバックを受け、自身の業務の進め方を振り返る   ✓ 改善点を明確にし、具体的な改善計画を立て、次の業務に活かす 以上の学びを活かし、今後の業務改善と効率向上に繋げていきたいと考えています。

クリティカルシンキング入門

イシュー発見で未来を切り拓く

講座で気づいた思考癖は? 本講座を通して、自身の思考の癖に気づくことの重要性と、その癖を意識することで改善できることを学びました。また、ビジネスフレームワークやコンセプチュアルフレームワークを活用することで、より納得感のある方向性を導き出す力を身につけることができると理解しました。 環境変化にどう対応? 普段は経験や直感に頼りがちな自分ですが、激しく変化する現代においては、社内外の環境変化やデジタルの進化に柔軟に対応するために、論理的な思考と分析が不可欠です。そのため、講座で学んだ知識を業務に積極的に取り入れていきたいと考えています。 経験不足をどう補う? 次期中期計画や組織方針の検討を行う立場として、未経験ゆえに考え方や進め方に悩む部分もあります。しかし、今回学んだ内容は直接活かすことができるため、一つひとつ実践しながらスキルを磨いていきたいと思います。さらに、議論の際にイシューを明確にすることで、テーマがはっきりし、軸に基づいた議論が進められるため、ミーティングの冒頭でイシューを確認することを習慣づけ、定着させたいと考えています。 フレームワークはどう活かす? また、物事を考える際にはイシューを明確にすること、各フレームワークがどのような場面で有効かを意識しながら業務を進めること、そしてクリティカル・シンキングをはじめとするビジネスフレームワークやコンセプチュアルフレームワークを継続的に学び、業務内で効果的に活用できるサイクルを作り上げることを目標としています。

データ・アナリティクス入門

効率UP!ロジックツリーで問題解決

ロジックツリーの応用法は? what.where.why, howでロジックツリーを組み立てて考える方法が非常に参考になりました。これまでは、問題を発見するとすぐに分析を始めてしまっていましたが、一度全体像を分解してから分析を始めることで、より効率的に進められるように感じました。 MECEを意識する重要性とは? また、MECE(漏れなく、重複なく)を意識して考えることも重要だと学びました。特に構造化が難しい問題の場合、とにかく思いつく選択肢を挙げることが多かったですが、今後はできるだけ全ての要素をもれなく考えることを心がけたいです。そのために、さまざまなフレームワークに触れて、自分の切り口をさらに磨きたいと考えています。 コンテンツ企画での分析法は? コンテンツ企画を立案する際、プラットフォームで評価される要素を構造化した後、企画や編集、テキストといった項目ごとに詳しく分解し、それぞれの要素における理想の姿と現状のギャップを分析することが必要だと感じました。これにより、原因の分析がより深く進められると考えています。また、コンテンツの反応を良くするために、各要素ごとにブレインストーミングを行いたいと思います。 理想のコンテンツをどう定義する? まず、自分が関わる領域のコンテンツ要素を構造化し、分解することから始めたいです。その後、それぞれの要素において理想のコンテンツを定義づけし、コンテンツ制作チームと協力しながら、各要素をどのように改善するかについて議論を進めたいと考えています。

データ・アナリティクス入門

データで見つける!チーム改善の極意

目的は何を求める? データ分析において、まず目的を明確にすることが重要です。比較対象や基準を設けて仮説を立て、分析を進めることで、確実な意思決定につなげることができます。また個人的に、円グラフと棒グラフ(縦横)の使い分けが参考になりました。これまでは棒グラフの方向についてあまり意識していませんでしたが、今後は意識的に使い分けていきたいと考えています。 業務はどう進める? 現在、私はR&D部門で営業支援機能の一環として、顧客向けPoC作成や自社商材のクロスセル・アップセル立案を行っています。この中で、KPIの進捗率が良いチームと悪いチームが存在します。進捗率の悪いチームに対し、原因を分析してどのような支援が必要かを検討するための材料とする予定です。講義を受け、現在の業務の大半が定性的な要素に支配されていることに気づきましたが、これらも定量的なデータとして取得可能であることに今後注力していきたいと考えています。 指標はどこを確認? 具体的には、目的を「進捗率の良いチームと悪いチームの差分を捉え、悪いチームのパフォーマンス改善につなげる」と設定しました。KPI管理している指標の前段階にある要素をロジックツリーで再度分解し、KPI設定に漏れがないか確認します。この過程で、数値データを得るための手法を考え、進捗率の良いチームと悪いチームへ調査を行って数値を取得します。同じ条件のデータ同士で比較して差分を捉え、数値的な差異からどのポイントで躓いているかを特定し、支援方法の検討につなげます。

クリティカルシンキング入門

未来を切り拓くクリティカルシンキングの旅

どのように過去を振り返るべきか? WEEK 1からの学習を振り返ると、断片的には思い出されるものの、見返したりライブ授業での振り返りによって多くのことを再確認できました。もう一度、おさらいとして見直しをしたいと思います。また、思考の出発点である「問い」を明確にし、問い続けることを意識的に徹底したいです。 課題を見つける勇気は持てていますか? 私はルーティン業務外の中長期視点の課題や問題について、つい後回しにしてしまう傾向があります。自分が考えやすい、考えたいことを先に考えてしまいがちなためです。ただ、こうした課題の中にこそ本質的な会社の課題が潜んでいる可能性があると思います。勇気を持ってその扉を開けてみたいと思います。 例えば、人員配置の適正化はビジネスモデルの変革にも影響する壮大なテーマかもしれません。また、海外展開強化に向けた現状課題の真因を探ったり、新規事業を模索する際にはバイアスをかけないように意識したりすることが重要だと考えます。 問いを明確にする方法は? 現状分析を試みる際にはフレームワークを使いますが、まずは問いを明確にし、一貫した問いにすることが大切です。そして、その問いについて共有するように心がけます。客観的な視点で考え、正しい日本語で文字に起こすよう意識します。相手が知りたい内容や興味を持てる資料であるかどうかも重要です。 小さな課題から何を学ぶ? 反復トレーニングの一環として、小さな課題を使ってクリティカルシンキングを体験することも続けていきたいと思います。

「分析」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right