データ・アナリティクス入門

ロジックツリーで退職分析に挑戦

自分に関係付ける重要性とは? どの内容も聞いたことがあるものでしたが、自分に関係付けて考えたことがないと気付き、少し恥ずかしい思いをしました。特に、ロジックツリーについては知識としては持っていたものの、実際に描くことはほとんどありませんでした。今後は退職分析において、要素分解を試みたいと思っています。こうした学びに必死になって取り組める環境に飛び込んで良かったと、改めて感じています。 問題解決の思考法はどう実践する? 問題解決のプロセスとして、What(何が問題か)、Where(どこに問題があるか)、Why(なぜ問題が起きているか)、How(どうするか)の順に考えることを学びました。しかし、私の場合、特に「Why」にこだわりすぎて哲学的になりすぎたり、わからなくなってしまうことがあります。そのため、この順番通りに愚直に考え、PDCAサイクルのように思考を回していきたいと思います。 人事データの分類方法は? 私は人事部でデータ分析を担当しています。ロジックツリーにおいて、人事データに関する情報は、「個人情報」や「雇用情報」などに分類されます。具体的には氏名、生年月日、性別、入社日、部署、役職、資格、経験、語学といった情報です。これをMECEにするためには、さらに細かく分ける必要があると感じました。また、人事データという漠然としたカテゴリーから、具体的に項目を洗い出すことが可能だと思いました。 実践のために心掛けることは? 実践においては、手を動かし、描き出すことが重要です。周囲のメンバーと積極的に対話し、多角的な意見を収集するよう努めたいと思います。同時に、目的を明確にすることを忘れないように心掛けます。そして、私は製造業に勤めていますので、「直接部門」と「間接部門」を混同しないよう、気を付けて分析していきたいと思います。

クリティカルシンキング入門

データ分析のコツで業務効率アップを実感

数字分析で見える傾向は? 数字をいくつかのパターンでグラフ化し比較すると、傾向や特徴がつかめることがわかりました。知りたい情報に対して、意図的に複数の分析軸が必要であることも理解しました。特に一番の気づきは、一つの分析結果だけを見てすぐに結論を出すのは危険だということです。急ぐあまりに、ついやってしまいがちですので気を付けたいと思います。 分解時の注意ポイントは? また、切り口を考える際のポイントとして、全体を定義したうえでモレなくダブりなく分解していくことが重要だと感じました。意識してチェックしていないと、歪みが出ることに気付けません。 課題の本質をどう見抜く? 自分の業務では、お客様アンケートなどを整理する際の切り口を設定するときに使えると思いました。さらに、原因不明な状態で課題改善を依頼された際にも有効だと感じます。例えば、上司から「この課題はおそらくこの辺に原因があるからこの方向性で解決してほしい」と相談され、現場では「ほんとの原因はそこではないと思う」という意見の乖離があった際、どのように調整すればよいか悩むことがあります。そのようなときに、要素分解を用いて課題の本質を明らかにすることができると思いました。 精度の高い分析へ向けて 現在推進しているサイトのUI改善は、ヒアリングを中心に改善施策を検討していますが、今一度データの分析を掘り下げてみたいと思いました。その際に以下の点を実施しようと思います。 - 切り口を複数用意するために、分析に必要なデータを多く収集する - 手を動かして分解する - どんな切り口が分析に役立ちそうか関係者にもヒアリングしてみる - モレなく、ダブりなくの視点で問題ないか、分析の切り口を周囲の人と意見を聞き確認してみる 以上の点を意識して、より精度の高い分析を行いたいと思います。

データ・アナリティクス入門

数字から紐解く現場の実情

データ分析はどう見る? 今週はデータ分析の基本的なアプローチについて学びました。データを評価する際は、まず「データの中心がどこに位置しているか」を示す代表値と、「データがどのように散らばっているか」を示す散らばりの2つの視点が大切であることを実感しました。代表値としては、単純平均のほか、重みを考慮した加重平均、推移を捉えるための幾何平均、極端な値の影響を排除する中央値などがあると理解しました。また、散らばりの具体的な指標として標準偏差を学び、データが平均からどの程度離れて散らばっているかを数値で評価できることが分かりました。 現場での活用方法は? これらの知識は、実際の現場での作業時間、コスト管理、安全管理などに役立つと感じました。例えば、複数の現場における作業時間の平均を求める際、単純平均だけでなく、現場ごとの規模に応じた重みをつけた加重平均を用いることで、より実態に即した傾向を把握できると考えます。また、標準偏差を利用することで、同じ作業工程でも現場ごとのバラつきを数値で示し、ばらつきが大きい工程には重点的な対策が必要であると判断しやすくなります。数字の羅列だけでなく、背景や偏りを理解しながらデータを多面的に捉える習慣の重要性を再認識しました。 次のステップは何? 今後は、各現場における作業時間や工程進捗、コストなどのデータを収集し、単純平均だけでなく加重平均や標準偏差も併せて算出することから始めます。特に、同じ工程内で標準偏差が大きい場合は、どの現場で大きなばらつきが見られるのかを明らかにし、その現場の状況や原因を直接確認することで、関係者と改善策を議論します。また、社内報告でも単なる平均値だけでなく、ばらつきや偏りをグラフなどで視覚的に示すことで、現場間の違いや課題を分かりやすく伝える資料作りに努めていきたいと思います。

デザイン思考入門

SCAMPERが拓くAI資料作成革命

SCAMPERは何ができる? PMIのAI Agentに関する登壇資料作成の中で、SCAMPERのフレームワークを応用する試みが行われました。具体的には、S(Substitute)として従来のPPT作成をやめ、ClaudeやGensparkなどのツールで資料を作成した後にPPT化する方法や、C(Combine)でGeminiのDeep ResearchとChatGPTのデータ分析、そしてClaudeやGensparkのスライド作成機能を組み合わせる工夫が挙げられます。また、A(Adapt)ではDeep Researchを講演シナリオ作成に応用し、M(Modify)ではGensparkの生成物をFigmaで編集する方法、P(Put to another use)ではジブリ化を意識した画像作成機能を利用してスライド資料を作成するアイデアが検討されました。さらに、E(Eliminate)により、ゼロからのPPT資料作成を最小限に抑え、R(Rearrange)では結論を補強するためのエビデンス集めにDeep Researchを活用するという工夫がなされました。 資料作成の今後はどうなる? 一方で、AIによる資料作成の技術は向上しているものの、何度も修正が生じた結果、従来の方法と比べると作業工数に大きな差がない状況です。以前はほとんど使い物にならなかったツールが、現在は曲がりなりにも利用可能なレベルにまで進化しており、今後の発展に期待が持てると感じました。ただし、現時点ではかなりの工夫が必要なため、AIにそのまま講演全体を依頼するのは難しいと実感しました。単一のツールやアイデアだけでは実現が難しい面もありますが、SCAMPERのようなフレームワークを活用することで、多様な視点やアイデアが生まれ、AIを用いた資料作成の可能性が広がると考えています。

データ・アナリティクス入門

仮説習得が拓く未来の学び

仮説はどう活かす? スピードや精度を向上させるためには、分析の初期段階で仮説を立てることが重要だと学びました。結論に向けた仮説と問題解決のための仮説という二種類の仮説があり、それぞれ目的や時間軸に合わせて使い分けることが求められます。 フレームワークってどう活かす? また、3Cや4Pなどのフレームワークを活用することで、思考が整理され、仮説形成が容易になると感じました。仮説に沿って必要なデータを抽出し、場合によっては新たにデータを取得するプロセスは、効果的な分析の基本と言えます。数字で見えにくい効果も、可能な限り数値として示すことで説得力が増し、合理的な判断材料となります。 数字で信頼はどう? 具体的には、コンバージョンレートなどの数値計算により、直感だけに頼らず理論的な判断が可能となります。フレームワークを用いることで、業務のスピード感と精度が向上した経験もあり、反対意見を含めた多面的な情報収集が仮説検証の信頼性を高めると実感しました。 新機能はどう検証する? さらに、新機能をリリースする際には、3Cの観点から分析して優先度を明確化したり、施策ごとの「影響度×実行難易度」を評価することで、迅速な判断を下しています。ユーザーインタビューにおいては、どの層のユーザーがどのフェーズで不満を感じているかを仮説から検証し、具体的なデータに基づいて問題点を抽出する工夫も行っています。 仮説と判断はどう連携する? 週に一度、仮説をもとに業務課題を整理し、必要なデータを洗い出すワークシートを作成するなど、日常的な業務の中でも「仮説→データ→判断」の流れを徹底しています。毎月、ユーザーアンケートやインタビュー結果の分析から改善案を提案し、社内でのレビューにてその流れを共有することで、施策の精度や実行力の向上に努めています。

戦略思考入門

戦略的思考を身につけるコツ

戦略的思考は何? 戦略的思考とは、目標を明確に定め、その目標までの道のりを逆算し、最短・最速で到達するための考え方や意思決定法です。言い換えれば、できるだけ早く効率よく目的や目標を実現する方法とも言えます。戦略は大局的かつ長期的な目的や方針を指し、それに対して戦術は局地的で短期的な手段を意味します。 最小労力で成果は? 時間は有限です。そのため、最小限の労力で最大・最速の成果を求めることは非常に重要です。このためには、「やるべきこと」と「やらなくてもいいこと」をしっかりと選別する必要があります。そして、企業や事業が持続的な優位性を保つために「独自性」を持つことも大切です。 新規計画の鍵は? 新規業務においては、長期的な目標設定と、それを達成するための逆算による実行計画が鍵となります。この計画は、他者に理解してもらうための資料作成やプレゼンに活用できます。 目標修正はどう? 既存業務においても、大局的な目標を常にリマインドし、状況に応じた実行計画を修正することが求められます。現状を分析し、業務内容の必要性を見極めた上で、他者への説得やプレゼンに活かすことが可能です。 生活目標はどう? 私生活においては、適切なゴール設定を行う癖をつけることで、さまざまな状況における成功体験を増やすことができます。これにより、他者とのコミュニケーションにおいても、共感や参加を得やすくなるでしょう。 目標再考はどう? 無意識に自分流で行っていた目標設定や逆算についても懐疑的になり、長期的視点で適切な目標設定ができているかを考える時間を持つことが重要です。その上で目標達成までのルートを考え、「必要/不要」を判断し、より早く効率的な方法を検討します。さらに、「自分らしさ」を加えることができないか、一度考えてみることも有益です。

戦略思考入門

集合知で描くSWOT活用の新視点

フレームワーク活用の理由は? フレームワークを知っているだけでは意味がありません。特にスタッフ部門では、直接的に活用できる場面は限られているように感じていました。しかし、具体的な活用ポイントや事例を学ぶことで、SWOT分析やその他のフレームワークも、読み替えや置き換えによって適用できる場面があるのではないかと考えるようになりました。 集合知はどう作用する? また、集合知の重要性も深く心に残りました。意見が食い違う場面は日常的にありますが、それを単なる困難と捉えるのではなく、多面的な認識が得られ、議論を通して考えが洗練され、抜け漏れの防止にもつながるというポジティブな側面に着目し、有難く享受していきたいです。 体制強化の再評価は? これから取り組みたいのは、現在の体制強化の進め方についてのSWOT分析を通じた再評価です。漠然と正社員を補充するだけでなく、効率と効果の両面で新たな気づきが得られるのではないかと期待しています。また、個々がプロとして働くことから、プロ集団として組織全体で取り組むというマインドチェンジも重要です。現状ではすべてをみんなでやろうとするのは難しいかもしれませんが、メンバーの負担を軽減し、集合知の重要性を訴えながら適切な雰囲気を作ることが必要だと考えています。これは長期的な課題かもしれませんが、戦略的に最短で進めることを目指します。 SWOT分析はどう機能? まずは自組織のSWOT分析を実施し、その結果を基に体制強化策の見直しを行いたいと思います。集合知を活かす組織づくりに向けては、この研修での学びや気づきを月次会議で共有することから始めたいです。また、私自身が「一緒に仕事をしたい」と思われるような人間性と振る舞いを心掛け、日々、明るく元気に取り組むことを意識していきたいです。

戦略思考入門

ビジネスフレームワークで広げる視野

フレームワークはどう活かす? 戦略的に考えるためには、単にアイデアを出すだけでなく、ビジネスフレームワークを活用して広い視野で整理していくことの重要性を再認識しました。組織としての判断やアクションを決定する際、関係者が納得しやすくなるためにもフレームワークを用いることが役立ちます。ただし、講義で指摘された通り、全ての関係者が100%納得することは非常に稀であり、フレームワークを用いても意見の相違や議論の発散が生じることは多々あります。重要なのは、考えを整理すること自体が目的にならないようにしつつ、フレームワークを効果的に活用することです。 3C分析は何を示す? 人事業務を担当している私にとって、3C分析は採用アプローチを検討するうえで非常に有用です。また、人事制度の企画や組織・人材開発においては、SWOT分析を活用し、外部要因・内部要因それぞれの強みと弱みを認識した上で、強みを伸ばす施策や弱みを克服する施策を考えることができます。しかし、分析の結果が人事部内で正しいとされても、それが実際に望ましいものかは限りませんので、各事業部と共有して修正を加えながら進めることが求められます。 目的設定は合致してる? 主に教育研修を担当している私は、施策を企画する際にSWOT分析を行っています。研修となると手段、つまりどのプログラムを実施するかに目が行きがちですが、目的を見誤らないためにも分析が重要です。対象者の現状を適切に認識した上で目的を設定し、その目的に沿った研修プログラムを構築していきます。また、組織・人材開発で新たな施策を企画する際には、途中で反対に遭ったり、運用面で困難が生じ頓挫することが多くあります。そのため、バリューチェーン分析によりどのプロセスがネックになっているのかを特定・分析していくことが必要だと感じています。

データ・アナリティクス入門

データ分析の極意と失敗しない一歩

ステップを踏む重要性は? ステップを踏むことと全体像を把握することは大切です。MECE(Mutually Exclusive, Collectively Exhaustive)の視点で全体を捉え、すぐに行動するのではなく、熟慮することが重要です。現状把握、原因分析、目標設定、そして打ち手の流れを理解する中で、特に現状把握が最も重要となります。多様な切り口から複数の要因を見つけ出し、そこから原因を確定することが求められます。例えば、QCサークルのような取り組みが有効です。そして、問題解決の目的が達成されたかどうかを検証することも忘れてはいけません。 問題解決のパターンとは? 問題解決には二つのパターンが存在します。一つはあるべき姿と現状のギャップを埋めるもので、もう一つは将来的な目標を現状と比較し、その余白を埋めるものです。後者は単に正常に戻すだけではないという点がポイントです。 原因分析の力量が成功を決める? 私自身、仕事の中で問題を解決する手法を使用していますが、事故対応策の相談や質問を受ける際、絡まり合った要因を考慮しながら原因を探り、対策を講じています。問題が単純に解決できる場合もありますが、連鎖的に解決される場合もあり、対応策が多岐にわたることがあります。原因分析の力量が重要であり、そのためには切り口の選び方が解決の度合いを大きく左右すると思います。 検証不足は問題を招く? 気になる点としては、要因分析から原因把握を行う際に、十分な検証を行わずにすぐに解決策に飛びついてしまうことが多く見られます。複数の解決策を列挙し、その中から重要度が高く、効果があるものを優先して対応することが肝心です。それでも上手くいかない場合には、PDCA(Plan-Do-Check-Act)サイクルを再検討することが必要です。

データ・アナリティクス入門

データ分析で実現する未来の可能性

比較の重要性とは? データ分析において、比較は極めて重要な要素です。要素を整理し、性質や構造を明確にすることで、なぜ「良い」あるいは「悪い」と判断されるのかを理解することができます。判断するためには、特定の基準や他の対象との比較が必要であり、比較を通じて初めてデータに意味が生まれます。 目標設定の重要性 分析には目的や仮説の明確な設定が不可欠です。分析の目的が曖昧であったり、途中でぶれてしまうと、都合の良いデータばかりを使う危険性が生じます。また、不要な分析に時間をかけてしまうリスクもあります。したがって、「何を得たいのか」という分析の目的と、それに必要なデータの範囲をしっかりと見極めることが必要です。 データの特性と可視化 データは質的データと量的データに分類され、さらにそれぞれ名義尺度・順序尺度または比例尺度・間隔尺度に分解できます。それぞれのデータの特徴を理解し、注意しながら扱うことが重要です。異なるデータを組み合わせることで、ひとつのデータだけでは見えてこなかった新しい情報を得ることが可能です。これらを効果的に可視化するために、グラフを利用しますが、グラフには適した見せ方があります。例えば、割合を示すには円グラフが、絶対値の大小を比較するには棒グラフが適しています。 新プロダクトの市場分析 現在、私は新しいプロダクトのリリースによって市場規模がどれだけ拡大するかについての分析を進めています。分析結果を基にした組織全体でのコンセンサス形成が不可欠であり、そのためには分析結果をわかりやすく可視化することが重要です。講義で学んだ内容をもとに、収集したデータをEXCELで整理し、グラフで可視化する予定です。どのデータをどのグラフで可視化するかは、講義の知識を活用しつつ、基準の設定も意識しながら判断しています。

戦略思考入門

差別化の盲点を見つける学びの旅

顧客目線の重要性とは? 差別化について日々悩んでいたため、今週の学習は特に有意義なものでした。特に、自分自身ができていなかった点や気をつけたいポイントとして以下の点が挙げられます。 まず、顧客目線が最も重要であることです。そして、「この点は差別化できるのでは?」と思う点があったとしても、一度立ち止まって考える必要があります。それは、差別化できると考えた点が、別の業界で既に得意としている施策かもしれないからです。また、視野が狭いと感じた場合には、フレームワークを探して利用し、抜け漏れがないように活用することが大切です。そして、どんなに差別化できても永続的な優位性は存在しないため、常に考え続ける必要があります。 差別化ポイントをどう見つける? 実際、今週は差別化できるポイントを考えることが業務の一環でした。自社として「こうしたい」「ここが差別化できる」と思いがちだったところを、「お客様にとって」という視点を常に持つよう意識しました。また、「自社の強みって何なんだろう?」と悩み、3Cなどを用いて分析しても腑に落ちない部分がありました。この件に関しては、現在VRIO分析を用いてより明確な差別化ポイントを見つける努力をしています。 既に行っている取り組みとしては、VRIO分析があります。また、見つけた差別化ポイントをポーターの3つの分類に分け、どれに当たるかを理解し優先度をつけています。 来週の戦略は? 来週取り組むこととしては、当初考えた競合だけでなく、差別化ポイントを既に実施している他の競合がいないかも確認する予定です。また、ポーターの3つの分類に分けた差別化ポイントについて、実現性だけでなく他の視点からも検討し、優先度付けを行います。最後に、関係者と話し合い、多様な意見を参考により良い施策を検討したいと考えています。

戦略思考入門

思考の深さが生む経営革新

今回変更する振り返り文章 本質は本当に大切? 本質やメカニズムの重要性を理解するための課題に取り組みました。単に耳にした言葉を引用するだけでは、相手を説得することは難しいと感じました。今回の取り組みでは、規模の経済性を活かすためには、「生産量を増やす」や「原材料の発注量を増やす」といった基本的な提案だけでなく、深く考える必要があると学びました。この経験を通じて、多角的な思考の重要性を改めて実感しました。 考え抜く意識は十分? 過去の学習から、「考えて考え抜くこと」が最も重要であると理解しました。規模の経済性については、コスト低減を考える際、一部のコストだけを抑えるのではなく、トータルコストの低減を目指す必要があります。例として、コスト単価を下げて発注量を増やすと、保管料が増える可能性があります。全体としてコストが抑えられているかを確認するため、まず全体のコストを把握し、細分化して分析することが重要です。そして、どこのコストが下がれば他のコストが上がる可能性があるか、全体を俯瞰する視点が必要です。 コストは細分化できてる? 規模の経済性を考えるうえでは、コスト全体を把握し、できる限り細分化します(事業別、商品別などの軸での細分化)。次に、考えられるコスト低減策を洗い出し、全体を俯瞰して総合的に判断することが大切です。この際、変動費・固定費も意識して細分化を行います。 習熟度は十分? 習熟度効果については、まず業務内容にかかる時間を洗い出します。時間がかかる業務に対しては、マンパワー不足なのか、習熟度不足なのかを検討します。マンパワー不足の場合は生産性の向上を目指した人員配置を考え、習熟度が不足している場合は、慣れや経験を積む時間が必要です。さらに、教育不足であれば育成も視野に入れることが求められます。

「分析」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right