戦略思考入門

本質に迫る!強み活用のヒント

強みの学びは何? 今回、強みや特性を分析・整理し理解するためのフレームワークを学びました。外部環境や市場の影響が大きい点から、企業のコアとなる強みを把握し、構築するにはまだ十分ではないと感じています。 顧客提案の焦点は? また、顧客提案に活用できると考えたものの、提案の際にはどの強みを重視しているかを明確に説明できるようにする必要性を感じました。何に重点を置いた提案なのか、具体的に説明できるようにしていくことが大切です。 価格以外の魅力は? さらに、コスト削減や低価格での実現は顧客にとって大きな魅力ですが、それだけが最重要であるとは限らないのではないかと考えています。

データ・アナリティクス入門

客数だけじゃ見えない真実

客単価のばらつきは? グループークでの演習を通じ、学びを改めて振り返ることができました。特に、客単価が昨年と変わらないと判断したとき、すぐに客単価を無視して客数に注目しようと考えたものの、客単価のばらつきを確認する視点が欠けていたことに改めて気づかされました。 データ活用はどう伝える? 実践を怠ると知識がすぐに薄れてしまうため、日々の貴重なデータを目的に合わせてどう活用するか、また、相手にどういったグラフで伝えるかを考えながら実行し続けたいと思います。さらに、分析結果をそのまま終わらせず、振り返りや他者からのフィードバックを受けて、常にブラッシュアップに努めるつもりです。

アカウンティング入門

コンセプトで磨く永続利益戦略

収益改善の秘訣は? 利益を上げるためには、売上高を増やすことと費用を削減することの二つが考えられます。しかし、やみくもに費用を削減するのではなく、その事業のコンセプトに基づいて何が重要なのかを見極め、次の一手を打つことが求められます。 効果の持続性は? たとえ費用削減が一時的に利益増に寄与したとしても、それは一過性に過ぎない可能性があります。事業のコンセプトを再確認し、それに沿った施策が実施されているかどうかを分析することが重要です。 業務にどう取り入れる? この考え方を業務に取り入れていくことで、より持続可能な利益の追求につながると感じています。

クリティカルシンキング入門

MECE思考で拓く数値の新視点

数字データ整理は? 数字データを分解し、表やグラフなどで見やすく整理すると、情報の捉え方が変わり、違った視点から理解できることに気づきました。情報を整える際は、もれなくダブりなく整理するためにMECEを意識し、層別、変数、プロセスといった切り口で分類することが大切だと実感しています。 事業所データの見方は? また、仕事で各事業所ごとのデータを扱うにあたり、階層別、用途別、期間別といった観点からMECEに基づいて分類することが、傾向の管理や分析に役立っています。数字データを表にまとめ、グラフ化することで、より見やすく、伝えやすい形に加工する工夫が重要だと感じました。

アカウンティング入門

魚屋事例で読み解く経営の極意

数字で何を学んだ? PL・BS・CFの関連性や事業の定量的判断を、数字で表現し説明できるという点でアカウンティングの本質を学びました。魚屋の事例を通じて、基本的な財務構造を理解し、将来的に自社の財務分析に活かすための具体的なイメージが湧きました。 何が業界に響く? また、自社だけでなく、競合他社の財務状況やIR、株式実務にも応用できる知識を得ることができたと感じています。これにより、経営判断をより適切に行い、学んだ内容を早期に実務へ落とし込む意欲が高まりました。今後は、本講座の内容だけでなく、他の資料と照らし合わせることで、さらに知識を深めていきたいと考えています。

データ・アナリティクス入門

順序立てる学びで未来創造

課題把握の秘訣は? 録画で視聴しましたが、課題の把握から具体的な解決策の立案まで、順を追って考えることができた点が大変勉強になりました。これまではデータに飛びついてやみくもに分析を行っていましたが、今後は問題解決のステップに沿って、アウトプットのイメージを明確に持ちながら進めたいと思います。 実績分析のコツは? また、営業実績の定量分析において、過去のトレンドと比較して減少している部分にばかり目が行ってしまっていました。今後は、実績が好調な店舗や項目を分解し、その要因をしっかり把握することで、他店舗にも活かせるノウハウとして展開していきたいと考えています。

データ・アナリティクス入門

繰り返し検証で磨く納得力

仮説検証の意義は? 仮説を立て、その仮説を実際に検証することが重要です。検証方法や使用するデータに誤りがないかを確かめることで、より具体的な仮説が作成でき、仮説の精度が向上していくことが分かりました。 検証繰り返しは大丈夫? これまでの分析では、仮説に基づく作業は行ってきたものの、同じ仮説を繰り返し検証する取り組みは十分でなかったように感じます。仮説に誤りがないかしっかりと確認することで、具体的かつ精度の高い仮説が作成でき、説明する相手に納得感を与える報告が可能になると考えます。そのため、今後の分析作業ではこの考え方を意識し、検証作業を繰り返すことが重要です。

データ・アナリティクス入門

比較で磨かれる成長のヒント

分析の目的は何? 分析する目的を明確にすることが大切だと感じました。また、分析は単独で行うのではなく、比較を行う意識を持つことで、勝手な判断による自己評価を避けることができると思います。何を基準に良し悪しを判断するか、きちんと意識する必要があると再認識しました。 実績の評価はどう? 営業という仕事では、実績と活動量が重視されます。実績の評価は、単に個人目標の達成度だけでなく、他者との比較によりその良し悪しが明らかになる点を考慮する必要があります。このような考え方を取り入れることで、従来とは異なった質の高い振り返りが可能になり、今後の成長につながると感じました。

データ・アナリティクス入門

分析で気づく新たな視点: データ比較の重要性

データ分析での思考法とは? 「分析は比較なり」という言葉が印象的でした。これまで、データ分析といえばすぐに数値を操作してパーセンテージを計算し、グラフを作成することだと思い込んでいました。ですが、何より思考の部分が重要であることを教えてもらい、とても参考になりました。 オープンデータの課題はどう洗い出す? 現在、私は行政のオープンデータから課題を洗い出す仕事に取り組んでいます。規模が大きいデータを前にして、どこから手を付ければよいのか途方に暮れることもありました。しかし「まずは比較」のアプローチを念頭に置き、データを俯瞰して眺めることを実践してみようと思います。

データ・アナリティクス入門

未来への一歩、検証と仮説の物語

なぜ同条件での分析? 分析を進める際は、なるべく同じ条件下で実施することが求められると改めて感じました。仮説が優れていても、検証方法の質が十分でなければ、せっかくの仮説が十分な成果に結びつかないためです。 どうバランスを保つ? また、コストやスピードといった品質、価格、納期(QDC)のバランスを考慮し、最善の解決策を見出すことの重要性も再認識しました。 要因分析の視点は? 業績推移の要因分析については、同一または異なる条件下で発生した事象や、その背景にある要因に着目することで、より広い視野から仮説を構築し、検証プロセスに活かせると期待しています。

データ・アナリティクス入門

仮説の罠を超える学び

仮説の固執はどう? これまでの経験から、仮説を立てる際に一方的に「決め打ち」してしまっていたことが反省点として浮かび上がりました。たとえば、部署としての方針を説明する資料作成時に、特定の仮説に固執し、その仮説に合わせたデータ収集に偏ってしまう傾向がありました。 多角的検証はどんな感じ? これからは、まず複数の視点からフレームワークを活用して仮説の網羅性を確認し、自分自身で異なる可能性を批判的に検証することを心がけたいと考えています。また、データ収集に際しては、どのように集計し、どのようなグラフや指標で示して分析を進めるかを意識することの重要性も再認識しました。

データ・アナリティクス入門

実情を活かす多角的分析のすすめ

目的や進め方は整っていますか? 分析に取り組む際は、まず目的や進め方を明確にし、関係者と認識を合わせることが重要だと学びました。また、1人で行う場合でも、フレームワークを活用して多角的な視点から分析し、偏りのない結果を目指すことが大切だと感じています。 今後の計画は具体的? 今後は、目的と求めるアウトプットをしっかりと定めた上で、データだけでなく現場の実情も踏まえた多角的な分析を実施していきたいです。各部門の意見を取り入れながら、What・Where・Why・Howの各ステップを丁寧に行き来することで、根拠ある改善提案へとつなげていくことを目指します。

「分析」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right