データ・アナリティクス入門

意識改革と比較で切り拓く学び

重要な学びは? 今週の学習では、以下の3点が特に重要であると感じました。まず「分析は比較である」ということ、次に「apple to appleの重要性」、そして「生存バイアスに注意が必要」という点です。 無意識な比較はどう変わる? 特に最初の点については、以前は無意識に行っていた比較を意識的に捉えることで、物事の見え方が大きく変わることに気づきました。実務においても、分析の際に「何と何を比較するのか」という問いが自然と浮かぶようになり、この意識を今後も大切にしていきたいと思います。 分析手順はどうする? これらの学びを踏まえ、現在実施している分析(今期の部内目標に関連するKPI設定)では、まずどのような目的で何と比較するのかを明確にしてから作業を始めるつもりです。具体的には、まずノートに手書きで目的と分析に関連するデータの種類を書き出し、思考を整理してから、実際にデータの収集と加工に取りかかる予定です。 apple比較の範囲は? また、apple to appleの重要性やデータ加工については理解が深まりましたが、実際の業務ではどこまでをapple to appleとみなすべきか、また意味のあるデータをどのように加工していくかについて、皆さんと議論できればと考えています。

アカウンティング入門

数字が織りなす経営の物語

会計の新たな視点は? アカウンティングというと、これまで単に「経理・会計」を連想していました。しかし、その本質には会社の活動を数字で分かりやすく伝えるという「説明する」側面があることに気付かされました。また、過去のデータを丹念に積み上げる几帳面な作業という印象が強かったものの、実はクリエイティブな一面も持ち合わせており、予算や数値計画の策定といった取り組みも広い意味ではアカウンティングに含まれると再認識しました。会社全体が意識して関わるべき活動であると感じています。 経営と数字はどう関わる? 起業後の自社では、経営と経理の双方に関わることになるため、財務諸表の各項目についての理解を深め、自社の現状を正確に把握できるよう努めたいと考えています。また、財務情報をもとに競合他社の分析を行い、参考にできる点を見つけ出すことも今後の目標です。大企業とスタートアップでは直接比較できない部分もあるかもしれませんが、成功している企業の構造を想像しながら学んでいきたいと思います。 新たな発見はどこに? 現時点では具体的なアイデアは浮かんでいませんが、グループワークを通じて異なるバックグラウンドを持つ仲間と議論を重ね、新たな気づきや知識を深めていきたいと考えています。どうぞよろしくお願いいたします。

データ・アナリティクス入門

仮説×分析で開く解決の扉

仮説立案の基本は? 仮説には、結論に至る仮説と問題解決に焦点を当てた仮説の二種類があり、問題解決の仮説では「What(問題は何か)」「Where(どこに問題があるか)」「Why(なぜ問題が発生しているのか)」「How(どうすべきか)」の順序で検証することが基本と学びました。 フレームワークは効く? また、仮説を立てる際には、3C分析(市場・顧客、競合、自社)や4P分析(製品、価格、場所、プロモーション)といったフレームワークの活用が有効で、これにより具体的かつ詳細な仮説を構築しやすくなると理解しています。 効果検証はどう? 現在、交通系ICカードで決済するとポイントが10倍になるキャンペーンの効果検証に取り組んでおり、決済回数や決済金額の増加などを評価指標としています。この分析に際しては、問題解決の仮説を立て、3C分析や4P分析を積極的に取り入れることで、データ分析の精度を向上させることを目指しています。 分析精度を上げるには? 所属部署では専門のデータ分析担当者がおらず、これまで独学で自己流に分析を行ってきました。今回学んだ仮説の立て方やフレームワークをさらに活用し、数値の取り方や検証方法を体系的に整理することで、分析の精度を一層高めたいと考えています。

戦略思考入門

フレームワークで拓く経営の未来

どう達成感を感じた? 一連のフレームワークの基礎を包括的に学べたことにより、大きな達成感を得ることができました。まず、目標を明確に設定し、現状とのギャップを正確に把握すること。そして、その達成のために複数の選択肢を用意し、吟味した上で最適なものを選び出す考え方が非常に勉強になりました。 外部環境はどう影響する? また、不要な情報を削ぎ落とすことで結果的に顧客の利便性を向上させるという発想が印象に残りました。眼前の顧客だけに固執せず、外部環境の変化も経営判断に取り入れる重要性を再認識することができました。 企業の判断はどう変わる? 従来の経験や勘に頼るのではなく、フレームワークを企業の意思決定の基盤とする必要性を強く感じています。今回学んだ内容を活用し、上場企業の中期経営計画やIR資料、統合報告書などをもとに生成AIによるPEST分析に取り組むことで、より具体的な戦略策定を目指したいと考えています。 AI連携はどう進む? さらに、自社の過去の経営戦略資料を活用し、生成AIと連携することで迅速な意思決定を実現する試みにも挑戦していきます。今後は、マーケティング、バリューチェーン分析、ファイナンスといった分野についてもより深く学び、経営判断力の向上につなげていきたいと思います。

クリティカルシンキング入門

図で読み解くデータの真実

視覚化のコツは何? 今回の講座を通じて、視覚的に分かりやすい図表の作成や、元データを複数の視点で分解してグラフ化する手法を学びました。情報を可視化することで、データの本質に迫ることができ、分析の精度が高まる点が非常に印象的でした。 分解視点はどう活かす? また、データの分解方法として、When(時間)、WHO(人)、HOW(手段)の視点を活用し、仮説を立てながらデータを読み解くアプローチは、理論と実践をうまく結びつけると感じました。こうした手法により、伝えたい内容を論理的に整理し、より明確に説明できるようになると思います。 情報分解の秘訣は? さらに、MECEの考え方を用いて情報を漏れなく、ダブりなく分解する技術についても学びました。層別分解、変数分解、プロセス分解といった具体的な切り口を通して、第三者にも分析の背景や意図を的確に伝える方法を身につけることができました。 課題抽出はどう確認? 最後に、アンケート結果や経費使用の分析を通じて、課題の抽出と適正な施策検討につなげる事例は、実務における分析の重要性を改めて認識させられる内容でした。自分自身でデータを作成する際や、他者のデータを検討する際に、適切な分解と背景の説明が説得力を高めるポイントであると感じました。

データ・アナリティクス入門

要素分解が開く学びの扉

分解と分析はどうする? 分析を行う際は、まず対象を要素に分解することが重要です。ロジックツリーやMECEの考え方を活用し、問題解決のステップとしてWhat、Where、Why、Howに分けることで、あるべき姿と現状、そして現状と理想のギャップを正確に把握できるよう心がけています。 店舗のギャップは? また、実務の現場では、宿泊客のデータ比較や社内の研修で、グループ内の各店舗のありたい姿を設定し、現状とのギャップを店舗ごとに分析する取り組みが行われています。このような分析により、各店舗の改善点が明確になり、実効性のある対策が立てられるようになっています。 研修資料はどう整える? さらに、新入社員向けの研修資料作成においてもMECEを意識し、内容を整理することが求められています。現状、社内向けの資料が十分に整備されていないため、今回学んだことを活用して、より実用的で分かりやすい資料作りに努めています。 口コミ低評価をどう克服? 口コミ評価が低い店舗を訪問する場合、現状とあるべき姿のギャップを3つ以上洗い出し、具体的な改善点を見つけることが求められます。初回の動画視聴だけでは本質を理解しきれないため、何度も視聴しながら自分の手でメモを取ることで、理解と記憶の定着を図っています。

戦略思考入門

フレームワークで効率的に分析を進める秘訣

なぜゴールが大切? フレームワークを活用することで、考慮漏れがなく効率的に分析が進められますので、積極的に活用したほうが良いです。まず、出発点としてゴールが明確であればあるほど、そこにたどり着くための戦略がより精緻化されます。また、資源は有限であるため、どこに投資するかの判断ではROIの観点が重要です。 なぜプライベートも有効? このフレームワークは仕事のシーンだけでなく、プライベートでも活用可能です。特にプライベートのほうが取り組みやすく感じることもあります。 ペーパーレスの進め方は? 例えば、ペーパーレス推進の取り組みにおいては、自社の強みを活かす選択肢になっているかを広い視野で確認することが必要です。また、業界他社の動向をしっかりと把握し、不足している情報があっても、とりあえずフレームワークを埋めてみるのが有効です。加えて、根拠を定量的に示し、合理的な説明ができるよう努めます。 レビュー時の確認は? 具体的には、ペーパーレス推進に関しては、メンバーが作成した資料をレビューする際に、考慮漏れやロジックの正しさ、根拠が示されているかという視点を持つことが重要です。まずはフレームワークを活用し、アウトプットをできるだけ可視化することで、より明確な理解を促進します。

戦略思考入門

商社マンが語る経済原理の実践法

戦略原則を学ぶには? 戦略やフレームワークを効果的に活用するためには、いくつかのステップを踏んで考えることが重要です。まず、戦略の原理原則やフレームワークを正しく理解することが必要です。次に、自社の状況を正確に把握し、その状況に適した戦略やフレームワークを活用することが求められます。 実践で何を見直す? 今回の学習で扱った規模の経済、範囲の経済、習熟効果、そしてネットワークの経済については、私自身既に知識を持っていました。しかしながら、これらを実際に適用する際には、自社の状況を正確に理解しないと、戦略の効果が十分に発揮されないことを改めて認識しました。 事業拡大のカギは? 私の会社は総合商社として、範囲の経済を活用しながら事業を拡大しています。新しい事業に投資する際、どの部分でどのようなシナジーが生まれるのかを的確に把握し理解することが重要だと考えています。 新規案件はどう進む? 新規事業開発案件では、各案件ごとに範囲の経済性を整理します。具体的なステップとしては、まず現在の事業内容を整理し、次に範囲の経済が活用できる部分を明確にします。その後、効果を分析し、戦略方針の説明書をドラフトとして作成します。そして、関係者からフィードバックを受けて最終的な方針を固める流れです。

データ・アナリティクス入門

実務で磨く!アウトプット思考の極意

実践的分析はどう進む? データ分析に関する実践的かつ体系的なアプローチを学ぶことができ、非常に実りある体験でした。講義では、What、Where、Why、Howの各ステップを意識しながら、網羅的に仮説を洗い出すことの大切さを学び、単なるやみくもなデータ分析とは一線を画す考え方を身につけることができました。 完成像をどう描く? また、アウトプットのイメージを初めから持つことにより、分析の質とスピードが劇的に向上する点にも気付きました。実務では、しばしば情報が断片的に扱われがちですが、最初から完成形を描くことで、全体の流れや数字、目的に合致したグラフ作成、さらには数式化まで一貫して対応できるようになりました。 仮説検証で何変わる? さらに、店舗オペレーションの検証や改善を行うチームでの業務において、さまざまなフレームワークや5つの分析視点を活用し、仮説と検証を徹底する重要性を再認識しました。自分自身のアプローチに偏りがあったことを改善し、チーム全体でナレッジを共有しながら、組織力を向上させる意識が高まりました。 理論と実践の架け橋は? 全体として、実践的な分析方法を通じて、理論と現場の架け橋となる知識とスキルを確実に身につけることができ、大変満足しています。

データ・アナリティクス入門

仮説とデータで磨く業務分析の極意

仮説で何を探る? 仮説を立てることは、原因を特定しやすくするための大切なプロセスです。複数の仮説を用意することや、それぞれに網羅性をもたせることで、様々な切り口から問題にアプローチできます。仮説を設定した後は、目的に沿ったデータ収集が必要となり、比較用のデータや反論を排除するための情報をまとめることが求められます。業務における仮説は、ある論点や不明点に対する暫定的な答えとして機能し、問題解決や結論導出のための道筋となります。 直感は信頼できる? 私自身は、予実管理の分析依頼に対して即座にデータに手をつけ、結論を出すスタイルで業務を進めています。しかし、今回の学びを通して、直感だけに頼った分析では非効率なプロセスになりがちであると感じました。それに加えて、分析の過程を言語化していないため、チーム内での情報共有が十分に行われていない点も課題として浮かび上がりました。 効率改善の方法は? 今後は、仮説を立てることで分析の焦点を明確にし、必要なデータの収集方法を検討することで全体の効率を高めたいと考えています。また、業務プロセスをエクセルなどに落とし込み、仮説からデータ収集までの流れを標準化する取り組みを進め、関心や問題意識を共有することで説得力のある分析を目指していきたいと思います。

データ・アナリティクス入門

数字に魅せられる!学びの実験室

数値とビジュアルの関係は? データ比較の際、数字に注目し、その数値をビジュアル化することで、数式に基づく関係性を把握することの重要性を学びました。大量データの分析では、目的を明確にした上で仮説を立て、データ収集を経てその検証を行うプロセスが大切であると感じました。また、分析する際には、単純平均だけでなく加重平均や中央値、さらには散らばりを示す標準偏差といった代表値を活用することで、より深い理解が得られると実感しました。 散らばりの意味は? 特に、データの散らばりに注目することで、数値の乖離をどのように防ぐかという点が印象に残りました。数値の集約や分布の理解は、分析の精度向上に大きく寄与すると考えています。 売上推移の分析は? 実績報告書の作成においては、単月売上や累計売上の推移を把握するため、商品別や販売先別の分析が有効であると思います。各取引先に対する実績や、特定商品の業績分析を行う際には、加重平均や中央値を用いて売上の平均成長率を求め、業績の変動理由について目的に沿った仮説を立て、データ収集と検証をする手法が有用だと感じました。 分布の理解は? また、正規分布の説明では、標準偏差に関する具体例の一部が分かりにくかったため、さらなる理解を深める必要があると感じました。

データ・アナリティクス入門

現状ギャップに挑む実践の秘訣

実践が難しいのはなぜ? 問題解決の手法として、あるべき姿と現状とのギャップを把握する大切さは理解していましたが、実際の業務で試みるとなかなか実践に移せないと感じました。また、ロジックツリーを活用する際、感度の良い切り口を見つけることの重要性を認識しつつも、その実現には難しさを感じています。 MECEに頼ってみる? 一方で、「MECEはほどほどに」という考え方が気持ちを楽にしてくれた部分もあり、今後は積極的に取り入れていきたいと思っています。同時に、ロジックツリー以外の方法についても学びを深めたいと感じました。 目的明確は必須? 先週までの学びでは、分析のためにはまず目的を明確にすることが不可欠であると再認識しました。その目的の明確化と、あるべき姿と現状とのギャップを検討することは、非常に密接に繋がっていると実感しています。今後の業務においては、販売実績の単なる加工に留まらず、「売り上げを伸ばすため、現状と目標値の大きな乖離が生じる要因を、MECEを意識して分析する」というアプローチを試みたいと考えています。 どの枠組みが有効? さらに、MECEを意識した分析を進めるにあたり、どのようなフレームワークが有用なのか、意見交換を通じて深めていければと思います。
AIコーチング導線バナー

「分析」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right