マーケティング入門

顧客の心に響くマーケティング学び

マーケティングの意味は? マーケティングは、顧客目線で価値を生み出すプロセスであり、その意味や解釈は多様であると実感しました。ドラッカーが提唱する「販売の必要性をなくす」という考え方は非常に究極的で、私も今まで「マーケティングとは何か」という問いに対してピンと来ない部分がありましたが、本日の講義でその疑問が徐々に解消され、理解が深まりました。極論のように聞こえるドラッカーの主張ですが、そこまで価値あるものが創出できれば、顧客は本当に喜ぶのだと感じました。 現場との連携は? 普段、私は研究開発の部門に所属しており、直接マーケティングの業務に関わることはほとんどありません。しかし、実際の業務ではマーケティングを担当される方々と連携する機会があり、その考え方や悩みを伺う中で、社内で共有されるマーケティング資料に興味を持って観察しています。資料がどのような流れや考え方で作られているのか、自分なりに分析し、今回の学びで得られる知識や考え方を実践に活かしていこうと考えています。 プラン共有の大切さは? また、講義中に講師から「同じマーケティングプランを持つことが大事」というお話があり、疑問ではなく「理想の姿」だと感じました。この理想的な状態を構築するためには、個人の能力だけでなく、組織全体としての考え方やフィロソフィーが重要だと実感しました。さまざまな業種の方とのディスカッションを通じて、異なる考え方に触れるとともに、自分自身の思考の癖を認識し、改善していきたいと考えています。

戦略思考入門

実戦に活かす経済理論のヒント

学びはどこから来る? ビジネスを成功させるためには、人件費削減や生産性向上に加え、事業経済性について学ぶことが必要だと実感しました。特に、規模の経済性、習熟効果、範囲の経済性、ネットワーク経済性に関する理解が深まったことが印象的でした。総合演習では、ある企業を題材に、売上の分析や改善策、事業の多角化、宣伝、広告などについて考察し、理論の具体的な適用方法を探ることができました。 役割分担は見直せる? 自身の業界や自社に当てはめると、規模の経済性と範囲の経済性においてまだ改善の余地があると感じました。特に、各組織での役割分担が固定化している現状を変えるためには、上位概念を明確に示し、どの部署が何を担い、どこに責任があるのかを明確にする仕組みが求められると感じます。また、アウトプットの成果を正しく評価できる体制も必要だと実感しました。 改善策はどう探る? さらに、習熟効果に関しては、ノウハウのマニュアル化や知識の蓄積といった形式知の整備、さらにはAIの活用を通じた日々の改善が重要だと再認識しました。遅れを取るリスクを改めて認識し、今後の課題として取り組んでいきたいと感じています。 戦略はどう組み立つ? 自身の開発業務においては、ターゲットとする国や地域、対応する法規をグルーピングし、いかに規模の経済性を活かすかを検討する予定です。自社だけでなく、グループ会社や主要関連企業との整合性を十分に考慮し、事業全体としての経済効果を最大化する戦略を構築することが重要だと考えています。

データ・アナリティクス入門

ロジックツリーで問題解決の全貌を掴む

現状把握と理想の見通しは? 課題解決においては、まず正確な現状把握と、理想の状態を明確化することが重要だと理解しました。直感的に「●●が問題だ」と結論を急ぎ、すぐに行動を起こすのではなく、ロジックツリーを活用して問題のポイントや原因、解決策を細分化することで、「もれなく、だぶりなく」全体像を把握し、思考の幅を広げて見落としを防ぐことが大切です。また、各問題点の影響の大きさも考慮すべきであると気づきました。 学校の問題はどう解決? 例えば、学校で何か問題が起きた際には、家庭や担任教諭などを「犯人捜し」したくなるかもしれません。しかし、問題は複数の原因が重なって起こっていることが多いため、ロジックツリーを用いて問題を分解し、原因を特定することで、より実践的で効果的な解決策を見つけることができます。すぐに対処できることばかりではないと思いますが、短期的に対応できることと、時間をかける必要があることを把握できることには大きな意義があります。これにより、短期・長期のどちらの改善策も視野に入れることで、単なる対処療法に終わらず、「今すぐには無理」と諦めることなく、適切な解決策を検討することができます。 問題整理はどうする? 問題を考える際には、頭で考えるだけでなく、ロジックツリーや自分なりの図式化を行うことで、問題点や原因、解決策を目に見える形で整理したいと思います。そして、「見える化」した問題を他の人とも意見交換して、図をより正確なものにし、関係者と課題への認識を共有しておきたいです。

データ・アナリティクス入門

数字が語る学びの物語

データ全体像は? データ比較や数値化、数字に集約して捉える方法、さらには視覚的および数式を通じて関連性を把握する手法について学び、大変参考になりました。これにより、データの全体像を把握しやすくなると感じています。 平均の違いは? 目的に応じて、単純平均だけでなく、加重平均、幾何平均、そしてはずれ値に対応する中央値など、さまざまな平均値の使い分けが有用であると再認識しました。数字を分析する際、データの中心値と散らばりを考えるアプローチは非常に重要です。 標準偏差はどう? 特に、これまであまり意識してこなかったデータのばらつき、すなわち標準偏差の理解については、自己学習が必要だと思いました。今回の学習を通して、データ分析においてばらつきの考慮が結果に与える影響の大きさに気付きました。 実践はどう進む? 今後は、学んだ知識を生かし、エクセルを活用してグラフ化するなど、実践的なアプローチに取り組んでいきます。また、どのデータを分析するかはまだ模索中ですが、さまざまな場面で応用できるよう、引き続き自己研鑽を積んでいく予定です。 難解概念の壁は? 一方で、「平方根」、「標準偏差」、および「正規分布と2SD」といった概念は難解に感じたため、これらの理解を深めるためにさらなる学習が必要だと感じました。また、過去に業務で使った経験がある「幾何平均」についても、当時はあまり考えずに対応していたため、Raw dataを見直しながら基礎から再確認していきたいと考えています。

リーダーシップ・キャリアビジョン入門

部下の行動を理解するフィードバック術

部下の背景を知るには? 部下の言動には必ず理由があることを実感しました。メンバーの行動の背後にある理由や背景を理解せずにフィードバックをしても、すれ違いが生じることを学びました。もちろん、メンバーが自分の言動の理由を言語化して説明してくれるとありがたいのですが、何も言わず黙り込んでしまうこともあります。メンバーの様子を把握するためにも、フィードバックは対面が基本であり、リモートの場合も必ずカメラONで行うことが重要だと認識しました。 どうしてリアルが重要? 期末にはMBOの評価面接や能力開発面接がありますが、これも基本的にリアルで実施します。やむを得ずオンラインで行う場合でも、カメラONの面談を心掛けています。また、ネガティブな評価を伝えなければならない際は、以下の点を意識しています。まず、事実に基づいて具体的に指摘すること。そして、メンバーの努力に共感し、将来的な成長を期待していることを伝え、前向きになれるよう支援します。自分の過ちに対しては素直に認め、その改善意志を示すことも肝要です。 フィードバックの極意は? 改善すべきネガティブな点だけでなく、ポジティブなフィードバックも事実に基づいて行うよう心掛けています。そのために、気づいたことを忘れないようメモを取ることを継続しています。メンバーの心情に共感するには、行動よりも感情に焦点を当てて質問することが大切です。目標が達成できなかった場合は、目標設定時の期待を再確認し、次年度に向けてメンバーを鼓舞しています。

データ・アナリティクス入門

実践で磨くデータ解析の魔法

分析の本質に迫る? 今までは、適当にグラフを選んだり、大まかな平均値を算出するだけで十分だと考え、自分なりの解釈でデータを加工していました。しかし、今回の学びを通じて、目的に応じた最適な計算方法や加工方法が存在することを再認識し、そのおかげで分析力が格段に向上することを実感しました。たとえば、ヒストグラムを用いることでデータの散らばりを可視化できることや、代表値として単純平均だけでなく、加重平均や幾何平均を算出することで、より精密な分析が可能になる点を学びました。演習やグループワークを通じ、目的や仮説に合わせた手法の使い分けの大切さも理解できました。 データ分析をどう工夫する? グラフの作成やデータの計算には苦手意識がありましたが、今回の学びをもとに自主的に練習していくことの重要性を感じました。普段はアプリやITツールを使って数字をまとめ、それをもとに売上報告や予実管理を行っていますが、今後は自分で実際にデータを加工し、深く掘り下げてみようと考えています。たとえば、顧客アンケートの分析においては、単純平均だけでなく、満足度のばらつきを把握するための計算に挑戦したいと思います。また、先週の学びも取り入れ、単にデータを加工するだけではなく、具体的に何を調べたいのか、目的は何かをしっかりと意識しながら実践していきます。 グラフ選びの裏側は? なお、今週の事前準備ではヒストグラムを選んだ方が多かったと感じましたが、他のグラフを試してみた方もいらっしゃるのではないかと考えています。

戦略思考入門

捨てる勇気が成長の鍵となる瞬間

捨てることの重要性とは? 捨てることの重要性を再認識しました。何かを始めるよりも、何かを捨てることのほうが難しいということは理解していますが、それを実践するには大きな苦労が伴います。利害関係を持つ人や変化を嫌う人たちの反対に直面することが考えられますが、それに対しては利益や会社の戦略の方向性を明確に打ち出し、論理的に説得することが必要です。 展示会の出展は本当に必要か? 例えば、展示会への出展について考えてみます。現在の市場シェアにおいて、展示会に出る意味があるのか、必要最小限の出展で十分なのではないかと再検討する必要があります。また、代理店への年末記念品の配布についても、果たしてそれがサービス向上につながるのか、本来の業務での関係構築のほうが適切なのではないかと疑問を持ちます。 見落としがちな優先順位設定 意外にも見落としがちなことに気付きました。まずは自分の中で各部署ごとに優先順位をつけることが重要です。各部署の業務分掌を基にして、どれが本当に必要な業務なのか、捨てられるものはないのか、捨てた場合のデメリットを補えるのか、アウトソース可能なものはあるのか、細かな点でも捨てられる部分はないのかを洗い出します。 戦略構築に必要な要素は? そのためには、会社の戦略・方向性と一致しているかどうか、論理的に矛盾がないか、全員に自信を持って説明できるか、組織構造に変化が必要か、リソースはどのように確保するか、代替手段はないかなどを考慮して戦略を組み立てる必要があります。

リーダーシップ・キャリアビジョン入門

覚悟と支援で引き出す自主性

エンパワメントとは? 今回の講座を通じ、エンパワメントについて深く学ぶことができました。エンパワメントは、目標を明確に伝える一方で、メンバー自身に遂行方法の選択を委ねることで、自律性を促進し、育成を図るリーダーシップ技法であると感じました。環境整備や必要な支援を行いながら、メンバーに権限と責任が与えられる仕組みは、業務の質を向上させるために非常に有用です。 どこまで介入すべき? また、エンパワメントを実践する際には、リーダー自身も一歩引かず、必要に応じてしっかりと介入する覚悟が求められる点が印象的でした。向いている仕事と向かない仕事を見極め、ミスが許されない業務や緊急性の高い業務には慎重に対応する必要があることを学び、リスク管理の重要性を実感しました。 目標はどう決める? さらに、目標設定と共有のプロセスにおいては、メンバーが納得し主体的に取り組めるよう、背景や意義を十分に伝えることが不可欠だと感じました。成功基準を具体的に示し、誰が何をいつまでにどのように行うのか、6W1Hの視点で計画を立てることで、各自の役割が明確になり、業務全体への理解が深まると考えます。 リーダーはどう在る? 今回の学びは、メンバーの自主性を引き出すと同時に、必要なフォローや支援を欠かさないリーダーシップのあり方を再認識させるものでした。今後は、これらのポイントを実際の業務に活かし、メンバーが主体的にタスクに取り組みながら互いに成長していける環境作りに努めていきたいと思います。

データ・アナリティクス入門

仮説の使い分けが未来を変える

仮説の区別はどう? 仮説の重要性については理解しているつもりでしたが、「結論の仮説」と「問題解決の仮説」を明確に区別して認識していなかったと感じます。結論の仮説とは「何が起きているか」を推測するもので、例えば、当年度の営業利益の予想精度を向上させるためには、今年度の新たな受注高が売上へ変わる金額が重要である、といった考えです。一方、問題解決の仮説は「何をすれば解決するか」を推測するもので、受注高の案件規模や工期の長さから、当年度中に売上へ反映されず翌年度にずれ込む可能性のある案件を抽出する、といった視点で考えます。原因の把握にとどまらず、結論の仮説検証をきちんと行うことが、効果的な問題解決の鍵となります。 検証の進め方は? 業績予想においては、結論の仮説はすでに立てられているため、次は問題解決の仮説検証に取り組む必要があります。検証では、複数の改善策候補の中からインパクトが大きく、実行しやすいものを優先し、検証可能な要素に絞って取り組むことが重要です。また、何をもって「効果あり」と判断するかを事前に決める必要があります。業績予想の精度向上を図るためには、受注から売上への転換、売上拡大、コスト削減、特定事業への注力などさまざまな要素の中から、改善余地が最も大きいものを優先順位を付けて絞り込むことも考えています。特に、当社では案件規模によって納期が大きく異なり、大型案件や工期の長い案件は年度ずれとなる可能性が高いため、その点を踏まえて仮説検証を進めなければなりません。

データ・アナリティクス入門

仮説検証で未来を切り拓く

仮説の立案方法は? 今回の講義では、「問題解決の4つのステップ」のうち、問題箇所を特定した後に原因を究明するため、原因の仮説を立てて検証するデータを集める考え方を学びました。原因の仮説立案には、3Cや4Pなどのフレームワークが有効で、視野を広げる軸となると実感しました。 なぜ複数仮説? また、実践力を養うためには、決めつけずに複数の仮説を立て、ヒト・モノ・カネといった要素に網羅性を持たせることが大切です。数字をただ分析するのではなく、何と何を比較して検証すべきかを深く掘り下げる視点が必要だと感じました。 仮説の分類と時間は? ビジネスにおける仮説思考は、「ある論点に対する仮の答え」として、結論の仮説と問題解決の仮説に分類され、時間軸(過去・現在・未来)に沿って内容が変わることが分かりました。正しく仮説検証を実施することで、説得力や仕事のスピード、精度が向上することも理解できました。 仮説習慣の活用法は? 普段から仮説提案型営業を心がけている私にとって、今回の講義は仮説検証の重要性を再認識する良い機会となりました。今後は、3Cや4Pのフレームワークを具体的に活用し、仮説を考える習慣を更に身につけていきたいと思います。 実務での仮説活用は? 日々の業務では、課題解決と検証を繰り返しています。どんな難しい案件に直面しても、自分なりの仮説立案法や問題解決のアプローチについて、フリートークで意見交換ができれば、より一層の学びと成長につながると感じています。

データ・アナリティクス入門

代表値で解く!データ発見の旅

代表値の魅力とは? 今回の学習では、従来の平均値だけでなく、加重平均、幾何平均、中央値といった代表値の種類について新たな知見を得ることができました。それぞれの概念を学ぶことで、データ分析の基本的な考え方を再確認する良い機会となりました。 グラフ選定のポイントは? また、グラフの選び方についても、これまで感覚的に選んでいたグラフの代わりに、何を伝えたいのかという結論を明確にした上で選定する重要性を学びました。これにより、視覚的にデータを効果的に伝える方法を理解できるようになりました。 データ読み取りの工夫は? さらに、データの読み取りにおいても、これまで直感に頼って見ていた部分を見直し、特徴的な箇所に注目するという具体的な指標を取り入れる点が印象に残りました。より重点的に情報を把握する手法を学べたことは、今後の業務に大いに役立つと感じています。 Web分析の疑問点は? 業務面では、Web分析の中で代表値の使用機会が少なかったため、なぜ使用しないのか疑問が生じました。具体的には、1ユーザーあたりの平均ページビュー数や訪問時間帯の最頻値の取り扱いについて、今後の必要性を再考するきっかけとなりました。 数値羅列の問題点は? 最後に、CSVで抽出される数値の羅列では異常値に気づきにくいという実務上の課題も再認識しました。毎日管理しているデータを視覚化することで、より直感的に異常値や問題点を把握し、効果的な分析につなげたいと考えています。

クリティカルシンキング入門

問いを極める学びの軌跡

問いをどう明確にする? 私は、まず課題を解決するために「解決すべき問い」を明確に言語化する重要性を学びました。これまで、問いが十分に明確化されないまま作業を進めた結果、関係者との認識にずれが生じ、手戻りが発生した経験があります。今後は、関係者との擦り合わせを徹底し、共通認識を形成することで、作業の論点を絞りロスを減らすことが大切だと感じています。また、課題解決に際しては、問題を適切な粒度で分解・構造化する必要があると実感しました。自分一人だけで切り口や構造を考え込むのではなく、他者の意見を聞きながら、異なる事象にも応用できるフレームワークを検討することが効果的です。 伝わる文章って何? 文章作成においても、伝わりにくい文章は読み手に不要な負担をかけてしまうため、相手の視点に立った配慮が必要であると学びました。以前は、メッセージとその根拠を十分に整理しないまま文章を作成していたため、一貫性に欠け読みづらい内容になっていました。そこで、文章を書く前にメモや別紙でメッセージと根拠を整理し、関係者の立場や視点を考慮した上で、わかりやすく簡潔な文章を心がけるようになりました。 資料の説得力って? また、パワーポイントなどの資料作成においては、各スライドで伝えたいメッセージと、図表から読み手が受ける印象を一致させることが肝要だと感じています。これにより、資料全体の説得力と理解しやすさが向上するため、今後のプレゼンテーションにも積極的に活用していきたいと思います。

「理解 × 認識」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right